
i

W.A.R.P.

the Wirelessly Accessible Record Player

Group 15

Martin Do (CPE)
Jose Medina (CPE)
Micaiah Reid (EE)

Daniel Weinberg (EE)

Mentor

Chung Yong Chan

Sponsor

SoarTech

ii

Table of Contents
1 Executive Summary ... 1

2 Project Description ... 2

2.1 Motivations, Goals & Objectives ... 2

2.2 Specifications .. 3

2.3 House of Quality ... 4

2.4 Block Diagram .. 5

3 Project Research ... 6

3.1 Record Player Components .. 6

3.1.1 Turntable .. 6

3.1.1.1 Belt Drive ... 6

3.1.1.2 Direct Drive .. 6

3.1.2 Stylus.. 7

3.1.3 Cartridge ... 7

3.1.4 Tonearm ... 7

3.1.5 Preamplifier & Amplifier .. 7

3.2 Record Player Models... 8

3.2.1 Audio-Technica AT-LP60 .. 8

3.2.2 Audio-Technica AT-LP3BK ... 8

3.2.3 Audio-Technica AT-LP120BK-USB ... 8

3.2.4 Numark TT250USB .. 8

3.2.5 Stanton T.62 M2 ... 9

3.2.6 Record Player Model Final Comparison .. 9

3.3 Microcontrollers .. 9

3.3.1 MSP430F4618 .. 9

3.3.2 CC2540F128RHAT ... 10

3.3.3 Nordic nRF52832 .. 10

3.3.4 ESP8266EX .. 10

3.3.5 Arduino Uno Rev3 .. 11

3.3.6 Redbear Labs Blend 2 .. 11

3.3.7 Redbear Labs BLE Nano v2 and MK20 USB Board .. 11

3.3.8 Microcontroller Final Comparison .. 11

3.4 Bluetooth Transceivers ... 12

3.4.1 CC2560 .. 12

3.4.2 HC-05 ... 13

3.4.3 Bluetooth Transceiver Final Comparison .. 13

3.5 Motor Research .. 13

3.5.1 DC Motors .. 13

3.5.2 Servo Motors .. 14

3.5.3 Stepper Motors ... 14

3.5.4 Motor Requirements ... 14

3.5.4.1 Torque Requirement .. 15

3.5.4.2 Precision Requirement ... 15

3.5.5 Stepper Motor Selection ... 16

iii

3.5.5.1 17HS16-2004S .. 16

3.5.5.2 ROB-09238 .. 16

3.5.5.3 PG35S-D48-HHC2 .. 16

3.5.5.4 26M048B2U-V31 ... 16

3.5.5.5 17HS19-1684S-PG19 .. 17

3.5.5.6 Stepper Motor Comparison .. 17

3.5.6 Motor Controls .. 17

3.5.6.1 H-bridge ... 18

3.5.6.2 Pre-Built Stepper Motor Drivers ... 19

3.5.7 Stepper Motor Driver Selection ... 20

3.5.7.1 V44 A3967 ... 20

3.5.7.2 A4988 .. 20

3.5.7.3 L293D .. 20

3.5.7.4 Stepper Motor Driver Comparison .. 20

3.5.8 Electromagnetic Clutch ... 21

3.5.8.1 Tiny-Clutch M50 ... 21

3.5.8.2 Micro EM Clutch 2.5... 21

3.5.8.3 102-02-13 .. 21

3.5.8.4 Electromagnetic Clutch Selection ... 22

3.6 PCB .. 22

3.6.1 PCB Layers .. 22

3.6.1.1 Substrate ... 22

3.6.1.2 Copper ... 23

3.6.1.3 Soldermask .. 23

3.6.1.4 Silkscreen .. 23

3.6.1.5 Layer Stackup .. 23

3.6.2 Component Packages... 24

3.6.3 Other PCB Terminology .. 25

3.6.3.1 Pads .. 25

3.6.3.2 Copper Tracks & Vias .. 25

3.6.4 PCB Design Software ... 26

3.7 Proximity Sensors ... 27

3.7.1 Proximity Sensors for Two-Sided Play .. 28

3.7.2 Proximity Sensors for Tonearm Calibration ... 28

3.7.2.1 Through-beam Sensors ... 28

3.7.2.2 Retro-reflective Sensors .. 29

3.7.2.3 Diffuse Sensors ... 29

3.7.2.4 OT 18 M 1000 N4-B4 ... 29

3.7.2.5 KT10-8-H-8 .. 30

The KT10-8-H-8 is also a diffuse sensor with a screw design that emits infrared light. It has a detection
range of .5mm to 10mm. A major disadvantage of this device is that it requires a signal transformer, so this device
will not be used. .. 30

3.7.2.6 LDC0851 ... 30

3.8 Bluetooth ... 30

3.8.1 Bluetooth Adoption ... 30

3.8.2 Bluetooth Documentation .. 31

iv

3.8.3 Bluetooth Network Topologies .. 31

3.8.4 Bluetooth Redundancy .. 32

3.8.5 Bluetooth Security ... 32

3.8.6 Bluetooth Android Development ... 33

3.9 Mobile Communication Technologies ... 34

3.9.1 Bluetooth Table Comparison ... 34

3.9.2 Bluetooth Legacy .. 35

3.9.3 Bluetooth Final Table Comparison .. 36

3.10 Computer Vision ... 36

3.10.1 Concepts & Algorithms ... 37

3.10.2 Computer Vision Libraries ... 38

3.10.3 Datasets ... 41

3.11 Deep Learning .. 43

3.11.1 Concepts & Algorithms ... 43

3.11.2 Deep Learning Libraries .. 45

3.12 Online Database ... 47

3.12.1 Last.fm .. 47

3.12.2 Discogs ... 48

3.12.3 MusicBrainz .. 48

3.12.4 Online Database Comparison ... 49

3.13 Market Research .. 49

3.13.1 Similar Products .. 49

3.13.1.1 LOVE Turntable ... 50

3.13.1.2 RokBlok ... 50

3.14 Application Server ... 50

3.14.1 Server-Side Web Frameworks ... 50

3.14.1.1 Ruby on Rails .. 51

3.14.1.2 ASP.NET ... 51

3.14.1.3 Node.js/Express.js ... 51

3.14.2 Server Database ... 51

3.14.3 Server Hosting .. 51

3.15 Mobile Development ... 51

3.15.1 Android ... 52

3.15.2 IOS ... 52

3.15.3 Windows Mobile .. 53

3.15.4 Mobile Operating System Final Comparison ... 53

3.16 Version Control ... 54

3.16.1 Version Control Table Comparison ... 54

3.16.2 Version Control Final Table Comparison ... 55

3.17 Android Studio .. 56

3.17.1 Intelligent Code Editor ... 56

3.17.2 Emulator ... 56

3.17.3 Testing .. 56

3.17.4 Layout Editor .. 58

3.17.5 GitHub Integration ... 58

v

3.17.6 Developer Workflow .. 58

3.17.7 Camera Integration ... 59

3.17.8 Mathematical calculations ... 60

3.17.9 Android Operating Systems .. 61

3.17.10 Android Nougat ... 61

3.17.11 Programming Flexibility : C/C++ Code .. 62

3.17.11.2 Enable C/C++ into Android Program .. 62

3.17.12 Java Native Interface : JavaVM & JNIEnv ... 62

3.17.12.2 JNI: jclass, jmethodID, jfieldID .. 63

3.17.12.3 JNI: Local & Global References ... 63

3.17.12.4 JNI: Exceptions .. 63

3.17.12.5 JNI: Extended Checking ... 64

3.17.12.6 JNI: Unsupported Features/Compatibility ... 64

3.17.13 LINT Tool .. 65

3.17.14 Vector Asset Studio .. 65

3.17.15 Network Profiler .. 66

3.17.16 Profiler GPU Rendering .. 66

3.17.17 Memory Profiler .. 67

3.17.18 CPU Profiler .. 67

3.17.19 Battery Stats and Battery Historian ... 68

3.17.20 Android Device : Samsung Galaxy 8 (Android 7.0).. 68

3.17.21 Android Device : Samsung Galaxy Tab (Android 4.2) ... 68

3.18 Computer Vision Development ... 68

3.18.1 Python Core Features ... 69

3.18.2 Development Environment .. 70

3.18.3 Python Integration ... 70

4 Design Constraints and Standards .. 72

4.1 Constraints .. 72

4.1.1 Mechanical ... 72

4.1.2 Time ... 72

4.1.3 Financial ... 73

4.1.4 Environmental ... 73

4.2 Standards ... 73

4.2.1 Power Supply Standards .. 73

4.2.1.1 IEC60950-1 ... 74

4.2.1.2 UL 60065 ... 75

4.2.2 Soldering Standards ... 75

4.2.3 C Programming Standards.. 75

4.2.3.1 Naming Conventions .. 75

4.2.3.2 Formatting ... 76

4.2.3.3 Comments ... 76

4.3.1 Android Application Guidelines .. 76

4.3.2 Android Application Guidelines: Design Standards ... 77

4.3.3 Android Application Guidelines: Functionality .. 77

4.3.4 Android Application Guidelines: C.P.S .. 78

vi

4.3.5 Android Application Guidelines: Privacy & Security ... 78

4.4.1 Android Open Source Project Coding Standards ... 78

4.4.2 AOSP : Java Language Rules .. 78

4.4.3 AOSP : Java Library Rules ... 79

4.4.4 AOSP : Java Style Rules .. 79

4.5.1 Google Style : Android Developer ... 80

4.5.2 Google Style: Source File Basics .. 81

4.5.3 Google Style: Source File Structure .. 81

4.5.4 Google Style: Formatting .. 81

4.5.5 Google Style: Naming ... 82

4.5.6 Google Style: Programming Practices ... 82

4.5.7 Google Style: Javadoc .. 83

5 Project Design .. 84

5.1 Hardware Design .. 84

5.1.1 Hardware Design Planning ... 84

5.1.1.1 Design A: ... 84

5.1.1.2 Design B: ... 84

5.1.1.3 Design C: ... 85

5.1.1.4 Design Comparison: .. 85

5.1.1.5 Vertical Arm Control ... 86

5.1.2 Power Supply ... 87

5.1.2.1 Power Supply Requirements .. 88

5.1.2.2 Converting AC Power to DC .. 88

5.1.2.3 Power Supply Design ... 89

5.1.3 Motor Control .. 90

5.1.4 Microprocessor ... 91

5.2 Software Design ... 92

5.2.1 Domain Model .. 92

5.2.1.1 Initial Domain ... 92

5.2.2 Embedded Programming ... 96

5.2.2.1 Embedded Programming Flowchart ... 96

5.2.2.2 Embedded Programming Implementation .. 97

5.2.3 Server Architecture ... 98

5.2.3.1 Initial Development .. 98

5.2.3.2 Web Request Handling .. 99

5.2.3.3 Searching For Records .. 99

5.2.3.4 User Authentication.. 100

5.2.3.5 Deployment and Database Creation .. 101

5.3 Computer Vision Development ... 101

5.3.1 Dataset ... 102

5.3.2 Image Representation... 102

5.3.3 Text Segmentation .. 103

5.3.4 Feature Extraction .. 105

5.3.5 Deep Neural Network.. 107

5.4 System Design & Schematics ... 108

vii

5.4.1 A4988 Board Schematic ... 109

5.4.2 BLE Nano 2 Board Schematic .. 109

5.4.3 Final PCB Schematic ... 110

5.5 Software Flow Chart ... 111

 .. 112

5.6 GUI Design .. 113

5.6.1 Login Page ... 113

5.6.2 Home Page... 113

5.6.3 Add Vinyl Album ... 113

5.6.4 Music Player ... 113

5.6.5 GUI Design Mockups .. 114

6 Testing ... 115

6.1 Record Player Testing .. 116

6.2 Motor Testing .. 116

6.2.1 Phase One Motor Testing .. 116

6.2.2 A4988 Stepper Motor Driver .. 116

6.2.3 Phase 1 Testing Results .. 119

6.3 Microstep Testing ... 119

6.3.1 Phase Two Motor Testing .. 120

6.3.2 Phase Two Motor Testing Results ... 121

6.4 Computer Vision Testing ... 122

6.4.1 Object Recognition ... 122

6.4.2 Optical Text Recognition (OCR) .. 122

6.4.3 Classification .. 122

7 Project Operation ... 123

7.1 Login & Registration ... 123

7.2 Cataloging Records .. 123

7.3 Record Player Setup ... 123

7.4 Queueing a Record Through the App ... 124

8 Administrative Content ... 125

8.1 Initial Budget ... 125

8.2 Final Cost Analysis ... 125

8.3 Financing .. 126

8.4 Project Milestones .. 127

9 Conclusion ... 128

9.1 Sponsor .. 128

10 Appendices .. 129

10.1 References ... 129

10.2 Copyright Permissions .. 137

viii

Figure List

Figure 1 - House of Quality .. 4
Figure 2 - Block Diagram ... 5
Figure 3 - H-bridge Circuit Diagram ... 19
Figure 4 - Thru-hole Diagram .. 24
Figure 5 - SMD vs Thru-Hole Size Comparison ... 25
Figure 6 - Thru-hole, blien, and buried vias ... 26
Figure 7 - Lint Tool Process... 65
Figure 8 - GPU Overdraw .. 67
Figure 9 - Design A Concept Sketch ... 86
Figure 10 - Design B Concept Sketch ... 86
Figure 11 - Design C Concept Sketch ... 86
Figure 12 - Power Supply Schematic .. 90
Figure 13 - Breadboard Setup Phase 1 Testing .. 90
Figure 14 - Blend v2 Board with Attched LED Circuit .. 91
Figure 15 - Vinyl Player 2.0 Domain Model ... 95
Figure 16 - Embedded Motor Control Flowchart .. 96
Figure 17 - Pixel Intensity Matrix Example .. 103
Figure 18 - A4988 Board Schematic .. 109
Figure 19 - BLE Nano 2 Board Schematic ... 110
Figure 20 - Software Flowchart.. 112
Figure 21 - GUI Mockups .. Error! Bookmark not defined.
Figure 22 - Project Components .. 115
Figure 23 - A4988 Datasheet Example .. 117
Figure 24 - A4988 Minimal Wiring Diagram ... 118
Figure 25 - A4988 Permission Request ... 137
Figure 26 - Redbear Labs Permission Request ... 137
Figure 27 – SuperDataScience Permission Request ... 138

file:///C:/Users/Micaiah.SCI/Downloads/120%20Page%20Submission.docx%23_Toc512537464
file:///C:/Users/Micaiah.SCI/Downloads/120%20Page%20Submission.docx%23_Toc512537465
file:///C:/Users/Micaiah.SCI/Downloads/120%20Page%20Submission.docx%23_Toc512537475
file:///C:/Users/Micaiah.SCI/Downloads/120%20Page%20Submission.docx%23_Toc512537481

ix

Table List

Table 1 - Record Player Model Final Comparison ... 9
Table 2 - Microcontroller Final Comparison ... 12
Table 3 - Stepper Motor Final Comparison .. 17
Table 4 - Stepper Motor Driver Final Comparison ... 21
Table 5 - Electric Clutch Final Comparison.. 22
Table 6 - Multilayered PCB Design .. 24
Table 7 - Bluetooth Comparison .. 34
Table 8 - Bluetooth 4.x Features ... 36
Table 9 - Computer Vision Library Comparison ... 41
Table 10 - Online Database Library Comparison... 49
Table 11 - Android Features .. 52
Table 12 - IOS Features .. 52
Table 13 - Windows Features .. 53
Table 14 - Version Control Comparison .. 55
Table 15 - Power Supply Requirements .. 88
Table 16 - Conceptual Class Category List ... 93
Table 17 - Common Association Category List.. 94
Table 18 - A4988 Microstepping Resolution Truth Table ... 120
Table 19 - Vertical Motor Microstep Testing .. 121
Table 20 - Horizontal Motor Microstep Testing .. 121
Table 21 - Initial Budget ... 125
Table 23 - Project Milestones .. 127

x

Equation List

Equation 1 – Needle Distance Calculation_____________________________x

Equation 2 – Convolution Integral____________________________________x

Equation 3 – Cost Function___x

1

1 Executive Summary
Vinyl records, once a nearly obsolete product, have been rising in

popularity. Though vinyl records and record players have many drawbacks when
compared to modern digital music consumption methods, including inconvenience
of use, difficulty of distribution, and increased production and manufacturing time,
there are also many advantages to the record players. One major advantage of
the record player is that the record player’s system for generating sound is
completely analog; the sound is never sampled and digitized, giving it a sound
quality that is truer to the original recordings. The main goal of the Vinyl Player 2.0
is to remove as much of the first disadvantage – inconvenience of use – as
possible in using a record player.

The main inconveniences in using a record player are tedious setup,
difficulty in song selection, and the need to physically go to the record player to
change songs, flip the record, lower the volume, or turn off the record player.
Though the tediousness of setup will not be addressed by the Vinyl Player 2.0 (as
in, the user will still need to place the record on the platter, etc.), the difficulty in
playing songs and the need to be at the record player to control it will be solved
with the Vinyl Player 2.0.

The Vinyl Player 2.0 will consist of two main systems: the record player and
the mobile application that will control the record player. The record player will be
able to play both sides of the record, allowing the user to have longer playing time
before having to physically be at the record player in order to change the record.
Additionally, the mobile application will be able to control the record player’s power,
volume, and rotation speed, as well as what specific song on the record is being
played. Whenever a new song is selected, the record player arm will be lifted off
of the record, moved to the appropriate location over the record, and then gently
lowered onto the record to continue playing music. This will allow the user to have
nearly full control over the record player remotely.

This document fully outlines the implementation of the Vinyl Player 2.0. The
Project Description chapter will describe generally the motivations for this project,
as well as the requirement specifications that will be met. The Project Research
chapter will explain all of the research that went into this project, including models
for motor, record player, and microcontroller components, software technologies
that will be used to create the application, and market conditions to evaluate the
need for a product like the Vinyl Player 2.0. The following chapter, Design
Constraints and Standards, will discuss just that, the constraints and standards
that were overcome and met when implementing this project. The Project Design
chapter walks through all of the design choices that were made and how they were
implemented and tested, both through hardware and software. The Project
Operation chapter explains in detail how the Vinyl Player 2.0 should be used by a
user, and the Administrative Content chapter outlines the cost, both in time and
price, of this project. Finally, the Conclusions chapter outlines the final outcome of
this project, as well as what was learned and gained from implementing it.

2

2 Project Description
This section will give a general overview of the Vinyl Player 2.0. The

motivations, goals, and objectives section will outline why this project is a good
idea in today’s market and what the group would like to accomplish through
creating this project. The specifications section dictates specific features that the
Vinyl Player 2.0 should have and generally how that should be accomplished. The
house of quality section will show how the user and engineering requirements in
this project sometimes conflict and sometimes work together, and how those
conflicts will be resolved in implementing this project.

2.1 Motivations, Goals & Objectives

Vinyl records have been experiencing a resurgence in recent years and
sales are currently at the highest they've been since 1988. This gust of wind in a
format that was considered antiquated just 10 years ago can be attributed to a
variety of factors such as sound fidelity, collectability, personability, and backlash
against the rapid digitization of music. Yet, even with the increasing interest in the
analog medium there are still some inherent issues that have the potential to stunt
the growth that the vinyl record industry is experiencing.
 One fault that might not be evident but provides a glaring weakness in the
ability of vinyl records scaling to a wider audience, especially younger users, is the
difficulty to consume content from a record in the manner that they are accustomed
to. Actions that are considered compulsory when listening to music nowadays such
as skipping, restarting, or jumping to your favorite part of a track require the user
to interface with the record player itself, ultimately tethering a user to the device to
perform these actions. Imagine having to go up to the tv every time you wanted to
change what you were watching or wanted to add subtitles on Netflix.

The inconvenience to the listening experience is further compacted with the
complications a typical user might have when trying to cue the record to the part
they want. First simply identifying what song is where can prove to be a challenge
as all a user sees is the many grooves that encompass the record. Secondly, the
arm/needle of the turntable requires delicate handling to assure the record is
neither cued to the wrong portion of the record or damaged due to excessive force,
which is a task that can escape many listeners.

All of the above reasons served as incentive to design a system that will rid
a listener of the inconveniences of playback, while using the analog format, and
simplify the vinyl experience as a whole. This system will provide the best of the
analog and digital music consumption experiences by not obstructing the current
functionality of the turntable, thus allowing users to cue the record themselves, but
adding the option to interface with the record player in a modern way to make its
usage more accessible. The ultimate goal of simplifying vinyl record usage to open
the industry will be achieved through a few subsystems that each control a critical
component.

The first is the subsystem that attaches to the arm of the record player and
will move the arm both horizontally and vertically to position the arm/needle to the

3

location on the record that is desired. This attachment to an existing record player
should be small enough as not to obstruct the style of the player and not add an
excessive amount of force when cueing the record. There will be a controller that
wirelessly communicates with the mobile application and formulates how much to
move the arm.

The second subsystem will perform image recognition on the record that is
currently on the platter of the record player to reliably pull information on that
record. This second subsystem will function within the mobile application that
accompanies the system and will utilize the user's camera to scan either the record
itself, which contains identifying information on its label, or the cover image of the
record. Obtaining information about the record such as name of artist, name of
album, etc. A pre-existing record database will be queried and more information
about the record will be pulled such as song lengths, year of release, etc. The third
subsystem, which is also harbored within the mobile application, will take the
information that is pulled and present in an intuitive music player fashion that a
user can interface with for playback.

Once a particular song/time is selected then the mobile application will
wirelessly communicate with the controller of the system attached to the turntable
arm, which will utilize factors such as rotations per minute (rpm), record diameter,
song lengths, etc. to move and cue itself close to the song/time that the user
desires. Close in this situation means a maximum offset of a few grooves from
where the desired location is. For a record playing at 33 rpm, most common rpm
rate, this offset will translate to a minimal number of seconds from where the record
was desired to start from.

2.2 Specifications

1. Device should not significantly increase the size of the pre-modified record
player.

2. Phone application
a. Connects wirelessly to controller.
b. Should allow users to use their phone to take a picture of a record

and find the scanned record in the database.
c. Allows the selection of a specific track found on the record from a

database.
d. Allows user to insert record data into database.
e. Allows the user start and stop the playback of a record.
f. Allows the user to add records from the database to their personal

collection for easy access.
g. Allows user to adjust the volume of the record player.

3. Arm Movement
a. A powered stepper motor will adjust the radial location of the record

player's arm. A motor will raise and lower the contact pin of the record
player.

4

b. The stepper motor should be able to place the needle within ±5
seconds of the desired time (maximum error of about 2 grooves of
the record in either direction).

4. Record database
a. Stores record specific details.

i. Which tracks are on the record.
ii. Times at which the tracks start and stop.
iii. The corresponding grooves on the physical groove on the

record. (this information is used by the servo to place the pin)
iv. Information to allow scanner to identify record.

b. Allows user to upload record data to database.
5. Controller

a. Connects wirelessly to phone application.
b. Connects to power outlet and acts as a power supply to all other

components.

2.3 House of Quality

The house of quality gives us an overview of the products user capabilities and
engineering requirements. It provides a graphical way to identify the positive and
negative dependencies between the capabilities and requirements. The house of
quality is an important tool because it lists the engineering requirement constraints
and allows us to identify problematic areas that hinder us from achieving our goals.
We can plan for the inevitable and identify creative solutions.

Figure 1 - House of Quality

5

2.4 Block Diagram

Figure 2 shows the high-level block diagram. This diagram shows how each
module connects to one another. The division of labor relating to each of the
specified blocks is also shown in this diagram. As this is the high-level diagram,
this only shows the components in an abstract sense. Additional information
regarding each of the block and specifics of the interactions will be shown later in
the report.

From the diagram, the division of labor can be seen. The software
components will be handled by the computer engineers of the group, Jose and
Martin. Since these tasks are integrated so tightly, responsibility between these
blocks will be spread between the two of them evenly. For the hardware side, the
electrical engineers will be responsible. The power supply and record player
controls will chiefly be the responsibility of Micaiah. Meanwhile, the stepper motor
controls will primarily be the responsibility of Daniel. The microcontroller block
tasks will be evenly distributed between Daniel and Micaiah.

*

Figure 2 - Block Diagram

6

3 Project Research
Before starting work on Vinyl Player 2.0, a variety of technologies had to be

researched, both for the hardware and software portions of the project. The
technologies researched include record players, microcontrollers, high-accuracy
motors, application frameworks, application hosting, computer vision, and open-
source music application programming interfaces (API).

3.1 Record Player Components
Vinyl record players needed to be researched from two different

perspectives: the individual components of the record player that allow it to function
and what make/model of record player would best suit our needs for a record
player that could be disassembled and repurposed. First, the individual
components of a record player – the turntable, stylus, cartridge, tonearm, and the
amplifier and preamplifier – will be expounded.

3.1.1 Turntable
The turntable of a record player is the round component that actually moves

the record. The turntable is commonly referred to as the “platter”. The center of the
turntable has a small, metal rod that the center hole of the record fits into. The
main portion of the turntable is made from some metal covered with rubber to
prevent from damaging the record. A heavier metal is preferred for the turntable,
as this provides higher momentum and stability which can reduce vibrations and
thus a better sound. The turntable is ideally at least 90% of the size of a record
because this provides more support for the record. There are two main
configurations of motors to power the turning of the turntable – belt drive and direct
drive.

3.1.1.1 Belt Drive
 In a belt drive, there is a belt with a bearing attached on one end (on which
the platter of the turntable rests) and a motor attached on the other end. For this
configuration, the motor does not directly turn the platter, but rather turns the belt,
which turns the bearing, and in turn rotates the platter. This separation from motor
to platter helps absorb vibrations created from the rotating motor, leading to
reduced noise and an improvement in the sound quality. This improvement in
sound quality does, however, come with a price. Belt drives tend to have less
torque and less control of the speed of rotation.

3.1.1.2 Direct Drive
 The direct drive configuration consists of a motor directly attached to the
platter. This direct motor-to-platter connection allows for highly consistent rotation
speeds, and allows for finer control of the speed. It also decreases the effect of
outside forces (the stylus/tonearm or user input) on the rotation speed.

7

 For the purposes of the Vinyl Player 2.0, a direct drive configuration is ideal,
as it will allow for control of the speed and direction of the rotation, which can be
controlled from the mobile application.

3.1.2 Stylus
 The stylus is the needle the rests on top of the record, and is made up of a
needle that picks up the vibrations in the record and a flexible metal strip that
connects the needle to the cartridge and tonearm. The needle is ideally a very hard
piece of metal in a conical shape. A very hard metal is used because, though the
arm and needle don’t apply a very large force onto the record, the small size of the
needle causes a very large pressure (26 tons per square inch) to be exerted on
the needle and record. The flexible piece of metal that attaches to the needle
allows the needle to smoothly rise and fall with the divots on the record.

In the context of the Vinyl Player 2.0, tone and sound quality are not of
extreme importance. While different types, shapes, and materials of the stylus can
have an extreme effect on the tone of the record player, those details are not
relevant for this application.

3.1.3 Cartridge
 The cartridge connects to the stylus, and converts the vibrations picked up
by the stylus into an electrical signal. The cartridge contains small magnets that
generate a magnetic field. The stylus, which is connected to a magnet, interrupts
the magnetic field created in the cartridge, which leads to a current in the leads
connected to the cartridge. Similarly, to the stylus, the cartridge can have a
substantial impact on the quality of sound generated by the record player, but a
high quality cartridge is not necessary for the purposes of the Vinyl Player 2.0.

3.1.4 Tonearm
The tonearm connects the stylus and cartridge to the base of the record

player. It can rotate smoothly about its point of contact with the base, and often
has a counterweight to adjust the force of the stylus on the record. The tonearm
can be curved or straight, and contains all of the wiring that connects the cartridge
to the preamp and amplifier.

In the Vinyl Player 2.0, the main functionality provided is precise control
over the placement of the stylus on the record via the tonearm.

3.1.5 Preamplifier & Amplifier
 While many record players do not contain built-in speakers, many do
contain a preamp to boost the signal generated by the stylus and cartridge. The
quality of these preamps greatly affects the sound quality of the record player. For
the purposes of the Vinyl Player 2.0, preamp quality is not important, but the
presence of a preamp may be necessary in order to remotely control the volume
of the output of the record player.

8

3.2 Record Player Models
 For the purposes of the Vinyl Player 2.0, a record player will be purchased
and modified to add features. It will be crucial to find a record player with the
appropriate specifications to be modified for use in this project. Below, a few record
players will be compared and qualified based off of turntable motor type, platter
material, configurability, and cost.

3.2.1 Audio-Technica AT-LP60
 The Audio-Technica AT-LP60 is an affordable, belt drive turntable with an
aluminum platter. The motor is DC servo-controlled and can operate at 33-⅓ RPM
and 45 RPM. It has two built-in preamps and a diamond stylus. This model has a
straight tonearm and costs $99.00.

3.2.2 Audio-Technica AT-LP3BK
 The Audio-Technica AT-LP3BK, though slightly more expensive than the
AT-LP60, adds a few useful features. It is belt driven with an aluminum platter. Its
motor is DC servo-controller and can operate at 33-⅓ RPM and 45 RPM. Like the
AT-LP60, it has two built-in preamps and a diamond stylus. The main feature that
is added to this model is the hydraulically damped lift control. This allows the arm
to be raised and lowered gently on pressing the Start and Stop button. Reusing
this capability could help simplify the build process of the Vinyl Player 2.0. This
model has a straight tonearm and costs $249.00.

3.2.3 Audio-Technica AT-LP120BK-USB
 The Audio-Technica AT-LP120BK-USB has a direct-drive turntable with an
aluminum platter. The motor is a DC motor and can operate at 33-⅓ RPM, 45 RPM
and 78 RPM. It uses an electronic braking system, has two built-in preamps, and
a diamond stylus. Like the AT-LP3BK, this record player has a hydraulically
damped tonearm lift. This model also has the capability to connect to a computer
through USB to create digital versions of the record (which is an unnecessary
feature for the Vinyl Record 2.0). Additionally, the AT-LP120BK-USB can spin the
turntable in either direction, for forward and reverse play. This model has a curved
tonearm and costs $299.00.

3.2.4 Numark TT250USB
 The Numark TT250USB has a direct-drive turntable with an aluminum
platter. The motor is a quartz-controlled direct drive motor. Like the AT-LP120BK-
USB, this model has a damped tonearm lift and can connect to a computer via
USB to convert the records to a digital format. This model has a curved tonearm
and costs $189.95.

9

3.2.5 Stanton T.62 M2
 The Stanton T.62 M2 has a direct-drive turntable. The motor can be run at
two speeds, 33-⅓ RPM and 45 RPM. This model has a straight tonearm and costs
$159.00.

3.2.6 Record Player Model Final Comparison
Though the AT-LP60 has a great, low price, it does not have direct drive,

and must, therefore, be ruled out. The AT-LP3BK can also be ruled out, as it
doesn’t have direct drive. The AT-LP120BK-USB was not chosen because of its
high price. The TT250USB was also ruled out because of its unnecessary USB
technology and higher price. In the end, the T.62 M2 was purchased. Below is a
table comparing the different models described above.

 AT-LP60 AT-LP3BK AT-LP120BK-
USB

TT250USB T.62 M2

Cost $99 $249 $299 $190 $160

Direct Drive No No Yes Yes Yes

Preamp Yes Yes Yes

Tonarm Straight Straight Curved Curved Straight

Configurability High Unknown Unknown Unknown High

Table 1 - Record Player Model Final Comparison

3.3 Microcontrollers

The microcontroller is a crucial component of the Vinyl Player 2.0. The
microcontroller will be used to communicate with the user’s phone application and
to control the location of the tonearm, the speed and direction of rotation of the
turntable, the output volume, and the master on/off switch of the record player.
Because the microcontroller will be located inside of an already manufactured
record player, it will be necessary to choose a microcontroller that is as small as
possible in order to ensure that it can fit inside the record player. Additionally, the
microcontroller will be required to have Bluetooth, a good sdk, and low cost. Some
microcontroller models will be compared below on those features.

3.3.1 MSP430F4618
The MSP430F4618 is an ultralow-power microcontroller made by Texas

Instruments. It uses only 400 uA/MHz in an active mode, 1.3 uA in standby mode,
and .22 uA in Off Mode. The wakeup time is an impressive 6 microseconds.

10

 It can be run at frequencies as high as 8 MHz, and it has 116 KB of
nonvolatile memory and 8 KB of RAM. This microcontroller has 80 GPIO Pins,
which is more than what is necessary to control all of the motors, the power, and
the amplifiers.

Additional features available with the MSP430F4618 are an LCD system,
real-time clock, watchdog, temperature sensor and a brown out reset. The
package size is a 16mm x 16mm LQFP package. Another advantage of the
MSP430 is that everyone involved in the project has experience programming
these microcontrollers. A disadvantage is that it doesn’t have built-in Bluetooth
capabilities. One MSP430F468 would cost $13.14.

3.3.2 CC2540F128RHAT
 The CC2540F128RHAT is a low-power microcontroller made by Texas
Instruments. With 5 power modes, this microcontroller can run anywhere from
19.6mA in Active mode to .4uA in Power Mode 3 (which allows external interrupts).
The wake-up time is about 3 microseconds. It has 8 KB of RAM and 21 GPIO pins,
which should be an appropriate number of pins to power all of the motors, power
systems, and amplifiers for the Vinyl Record 2.0.

 A very important feature of this microcontroller is that it has built-in
Bluetooth capabilities, with a Bluetooth v4.0 Compliant Protocol Stack. The
maximum data rate is 1000 kbps, the security used is 128-bit AES. The package
size is a 6mm x 6mm QFN40 package. Though no one in the group has experience
with this microcontroller, there is ample documentation for it. One
CC2540F128RHAT would cost $3.92.

3.3.3 Nordic nRF52832
 The Nordic nRF52832 is a powerful, ultralow-power system-on-a-chip made
by Nordic Semiconductors. This microcontroller has 3 power modes: OFF mode,
which uses .3uA at 3V, OFF mode with full RAM retention, which uses .7uA at 3V,
and ON mode, which uses 1.9uA at 3V. It has two memory options - 512kB flash
with 64kB RAM or 256kB flash with 32kB RAM. There are 32 GPIO pins, which
should be more than enough to power all of the motors, power systems, and
amplifiers for this project.

 This microcontroller has built-in Bluetooth capabilities, complying to
Bluetooth 5 standards. There are two options of data rates: 1Mbps and 2Mbps.
For the purposes of this project, 1Mbps would be more than enough, as the only
information needed to be sent through Bluetooth is simple instructions and times.
There are also two package size options: 6mm x 6mm QFN48 or a 3mm x 3.2mm
WLCSP package. One Nordic nRF52832 would cost about $5.73.

3.3.4 ESP8266EX
The ESP8266EX is highly integrated system-on-a-chip made by Espressif

Systems. This microcontroller has 3 power modes: deep-sleep mode, running at
20uA, sleep mode, and on mode. The CPU clock speed runs at 80 MHz and can

11

reach a maximum value of 160 MHz. It has 96KB of RAM and 1MB of flash
memory. It has 16 GPIO pins. This should be enough pins to control all of the
motors, power systems, and amplifiers for this project, though it might be cutting it
close.

This chip has Wi-Fi and Bluetooth capabilities. As Wi-Fi is not necessary for
the Vinyl Player 2.0, this might make the ESP8266EX overkill. The package size
is a 5mm x 5mm QFN32. One ESP8266EX costs $2.88.

3.3.5 Arduino Uno Rev3
The Arduino Uno Rev3 is a full microcontroller board made by Arduino. This

device differs from the others discussed because it has more than just the chip; it
also includes the full board, making powering and connecting the device to I/O
much simpler. The microcontroller used on the board is the ATmega328P. It has
32 KB of flash memory and 2KB of SRAM. The clock runs at 16 MHz, and it has
14 digital I/O pins. This may not be a sufficient number of pins to control all of the
motors, power supplies, and amplifiers for this project.

This device does not have built-in Bluetooth capabilities, but could be paired
with a Bluetooth transceiver. Since it is a full board, it is larger than the other
microcontrollers discussed, with dimensions of 68.6mm x 53.4 mm. One Uno Rev3
costs $22.

3.3.6 Redbear Labs Blend 2
The Redbear Blend 2 is an integrated development board that uses the

Nordic nRF52832 (discussed above). The advantage of the Blend 2 is that many
of the peripherals that would be necessary in setting up the nRF52832, such as
antennas for Bluetooth, are already implemented. Also, the software development
kit that comes with the Blend 2 is very easy to use. There are open source Arduino
libraries available for the chip used. The board has an input voltage ranging from
6.6V to 12V and has dimensions of 69mm x 53 mm. It has 26 Digital I/O pins, 8
PWMs and 6 ADCs. One Blend 2 costs $29.90.

3.3.7 Redbear Labs BLE Nano v2 and MK20 USB Board
The BLE Nano v2 has many of the same advantages of the Blend 2,

described above, without all of the extra features that are not necessary for this
project. Also, since the BLE Nano is not a full development board like the Blend 2,
it has lower voltage requirements, operating from 1.8 to 3.6 V. The MK20 USB
Board can be easily attached to the BLE Nano in order to upload code to the chip.
This is a major advantage over some of the other microcontrollers.

3.3.8 Microcontroller Final Comparison
As stated above, the ideal microcontroller for the Vinyl Player 2.0 would be

a low-power device with 20-30 available pins, at least 32KB of RAM and 256KB of

12

flash memory, Bluetooth capabilities, small in size and affordable in price. The
following table is a breakdown of those qualities of the preceding microcontrollers.

 Vin Current Blue
tooth

Pins RAM
(KB)

Size
(mm)

Price

MSP430F4618 1.8 –
3.6

400 uA ✘ 80 8 16 x
16

$13.14

CC2540F128RHAT 3 19.6 mA ✓ 21 8 6 x 6 $3.92

Nordic nRF52832 1.7 –
3.6

1.9 uA ✓ 32 32-64 3 x
3.2

$5.73

ESP8266EX 2.5 –
3.6

170 mA ✓ 16 96 5 x 5 $2.88

Arduino Uno Rev3 7 –
12

50 mA ✘ 14 2 69 x
53

$22

Redbear Blend 2 6.6 –
12

1.9 uA ✓ 26 64 69 x
53

$29.90

Redbear BLE v2 1.8 –
3.6

1.9 uA ✓ 26 64 69 x
53

$16

Table 2 - Microcontroller Final Comparison

Besides the specifications listed above, another factor that was taken into
consideration in choosing a microcontroller is ease of use and setup. Because of
its ease of use, ample memory, pin count, and its Bluetooth capabilities, and lack
of extraneous peripherals, the Redbear BLE v2 was chosen as the microcontroller.

3.4 Bluetooth Transceivers
Though an ideal microcontroller for this project would include built-in

Bluetooth capabilities, as some of the viable microcontrollers considered did not
include Bluetooth capabilities, some Bluetooth transceivers were also researched.

3.4.1 CC2560
The CC2560 is a complete Bluetooth transceiver system that is designed

for ease of use and to reduce time in implementation made by Texas Instruments.
This device has 5 power modes, ranging from 1 uA in shutdown mode, 40 uA in
deep sleep mode, to 112.5 mA in Continuous Transmission. This device could be
coupled with a microcontroller that doesn’t have built-in Bluetooth capabilities. It
complies with Bluetooth 4.1 protocols. One of these devices would cost $6.29.

13

3.4.2 HC-05
The HC-05 is also a Bluetooth transceiver that is commonly paired with the

Arduino Rev3. It runs at 3.3 V and consists of a Bluetooth serial interface and
Bluetooth adapter.

3.4.3 Bluetooth Transceiver Final Comparison
Because a microcontroller with built-in Bluetooth capabilities was chosen, a

Bluetooth Transceiver was not deemed necessary for this project.

3.5 Motor Research
After receiving user input from the phone application, the device must be

able to control the tonearm's position. The method to accomplish this requires the
use of several motors. These motors will be positioned to move the horizontal and
vertical location of the tonearm to allow the user to select the correct track on the
album. In this section, different types of motors will be mentioned, and discussion
will take place to decide the motor most suitable for this application. In addition to
motor selection, the control methods of these motors will also be discussed and
compared to find the solution.

3.5.1 DC Motors
 DC motors continuously spin as long as it is connected to a power source.
The speed of these motors is controlled by cycling on and off the power supply.
These motors are capable of running at high RPM and are typically inexpensive.
The high RPM and lack of real position control makes these types of motors
unsuitable for this application.
 Typical brushless DC motors work by having permanent magnets on the
outside and a spinning armature on the inside. The magnets remain stationary
while the armature rotates. The armature creates a magnetic field when current
flows through it. This causes the armature to repel and attract the stationary
magnets (stator). This causes the armature (rotor) to spin. To keep the motion of
the motor spinning, the poles of the armature must be changed. The brushes
handle the change in polarity. The brushes make contact with two spinning
electrodes attached to the armature to flip the polarity of the electromagnet as it
spins. Brushless remove the need for brushes by "turning the motor inside out".
This refers to putting the permanent magnet on the rotor and moving the
electromagnet into the stator. This gives two main advantages. First, the brushes
eventually wear out, lowering the lifespan of the motor. The second, the brushes
limit the maximum speed of the motor. Limiting the maximum speed of the motor
is not a big deal for this application, but limiting the motor's lifespan can be severely
detrimental. To compensate for the brushless version of a DC motor not having
these side effects, brushless DC motors have a higher initial cost.

14

3.5.2 Servo Motors
 The position of servo motors is controlled precisely unlike the position of a
DC. Also unlike DC motors, servo motors do not rotate freely. Instead, servo
motors rotate back and forth 180 degrees. Servo motors are very quick and have
a high holding torque, both of which are not necessarily needed for this application.

Servo motors work the same as how a DC motors operate. This is because
most servo motors contain a DC motor. To differentiate themselves from DC
motors, servo motors contain a control circuit and also a potentiometer. The motor
is attached by gears to the control wheel. As the motor rotates, the potentiometer
resistance changes, so the control circuit can precisely regulate how much
movement there is and in which direction.

3.5.3 Stepper Motors
 Stepper motors are controlled through energizing inductive coils to move
toothed electromagnets arranged around a central gear to a specific position.
setting up a stepper motor is more complicated than implementing a DC or servo
motor because stepper motors require energizing coils in specific sequence. Due
to the design of the internal electromagnetic gear, stepper motors move in specific
angle increments referred to as step angle. The minimum deviation (without
microstepping), or step angle, varies depending on the design of the motor. Due
to the precise angles at which stepper motors rotate to, they are perfect for this
application. Stepper motors are either unipolar or bipolar. A unipolar stepper
motors direction is controlled by a central tap which controls the direction of the
magnetic field. This lets the user control the direction of rotation of the stepper
motor without having to change the current flowing through the inductive coils.
Contrary to bipolar stepper motors which controls the magnetic field by controlling
the direction of the current going through the coils. Bipolar are more popular due
to higher supplied torque however are typically harder to control. Stepper motors
are the slowest of the three mentioned motors, but for this application speed is not
important. For this application, stepper motors are the most suitable for the task
and will be the focus of the research portion of this project.

3.5.4 Motor Requirements
 In order to lift and move the arm of the record player for the chosen design,
three stepper motors are required. The first stepper motor will be used to swivel
an assembly controlling two of the tonearm's horizontal movement. This motor
must be able to provide enough torque to move the entire assembly and potentially
both of the pitch motors. This motor must display exceptional precision in order to
move the needle within 1 groove of the desired groove. This mean the motor must
have precision of at least 0.2 degrees. This means that the step angle of the
chosen stepper motor must have a minimum step angle of 0.2 degrees. In addition
to these qualities, the horizontal motor should be as inexpensive as possible to
meet the designated price budget. Some stepper motors might meet the torque
requirement but do not meet the precision requirement. These motors still can be

15

used if the motion of the motor is either geared down sufficiently or able to be
microstepped to the desired location.
 The second type of motor used in the chosen design is used to move the
tonearms up and down. For each of the tonearms, a separate motor must be used
to move each of the two tonearms up and down. As specified in the design
overview for Design A, the arms lie on an armrest which is moved by the motors.
The tonearms are not attached to the armrest, but rather they are held in place by
the counterweight balancing the tonearms. As the motor moves the arm rest
downwards vertically, the arm will eventually make contact with the record. At this
point the motor can continue to spin without influencing the arm. This will allow the
arm to rest on the record without applying additional pressure on the record. For
this motor, precision is not an important factor as any overshoot/undershoot is
either unimportant or has no impact on the final resting place of the arm. This motor
only needs to provide enough torque to lift and lower the arm.

3.5.4.1 Torque Requirement
 There are two different types of torques that are given in stepper motor
datasheets. These torques are detent torque and holding torque. Detent torque is
the torque produced by the motor when the coils are not energized. When the coils
are not energized, it is desired for the motor to move as freely as possible, so the
arm moves freely along the rotating turntable. For this project, the desired detent
torque for the yaw motor should be as low as possible to reach the desired
functionality. The opposite is true for the pitch motor. The pitch motor should have
enough detent torque to hold the record player arm even when not energized.
Holding torque is defined as the amount of torque produced when the coils are
energized. The amount of holding torque is not massively important for this
application, because if the detent torque (which is normally much smaller than
holding torque) is sufficient for the project, then the holding torque should be
enough.

3.5.4.2 Precision Requirement
 The size of the records the record player play is 12'' in diameter. Most vinyl
records are played back on a turntable rotating at 33.33 revolutions per minute or
.5555 revolutions per second. On average, a vinyl record plays roughly 20 minutes
of audio. Using these numbers, this means each groove along the 6'' radius of the
record is roughly .009'' apart. For Design A, the angle the arm must move for each
groove changes depending on how far radially the desired groove is along the
record. For example, the smallest change of angle to move a single groove would
be the grooves along the outer edge of the record. For this worst-case scenario,
the smallest angle difference per record groove would be .086 degrees. To meet
the specification of being off by at most two grooves, the yaw stepper motor must
have a maximum step angle of 0.2 degrees. Most stepper motors have a step
angle of much greater than 0.2 degrees, but this can be overcome by gearing down
the input. In addition to additional gearing, the step angle of a stepper motor can
be further decreased by "microstepping". However, to perform microstepping, the

16

stepper motor would require a stepper motor driver which will be further expanded
upon later in the report.

3.5.5 Stepper Motor Selection
The selected motors must meet the previously mentioned specifications.

The following sections will list the pros and cons of the selected researched
motors. Following that, one or two of the motors will be selected for use in the
application. One motor will be used to control the horizontal movement of the
tonearm and another to control the vertical movement.

3.5.5.1 17HS16-2004S
 The NEMA 17 17HS16-2004S is a bipolar stepper motor. With a step angle
of 1.8 degrees, this motor does not initially meet the requirements for the horizontal
motor. In order to meet the requirements, this motor must be geared down 1:10 in
order to meet the .2-degree requirement. This in addition to microstepping should
meet the requirement. This motor also has a high current rating of 2A allowing it to
get sufficient torque to meet the rest of the specifications. At a price of 12.99$ this
motor is also the cheapest of the 4 potential stepper motors.

3.5.5.2 ROB-09238
 The NEMA 17 ROB-09238 is a bipolar stepper motor. With a step angle of
1.8 degrees, the motor does not initially meet the requirements for the horizontal
motor. In order to meet the requirements, this motor must be geared down 1:10 in
order to meet the .2-degree requirement. This in addition to microstepping should
meet the previously mentioned requirement.

3.5.5.3 PG35S-D48-HHC2
 The PG35S-D48-HHC2 is a bipolar stepper motor. With a step angle of
0.212 degrees, this stepper motor meets the precision specification for the
horizontal stepper motor without any down gearing. This combined with
microstepping should be ample precision to exceed the needed specification. The
price of this motor is 36.61$ which is quite expensive stepper motor wise.

3.5.5.4 26M048B2U-V31
 The 26M048B2U-V31 is a unipolar stepper motor. With a step angle of
0.212 degrees, this stepper motor meets the precision specification for the
horizontal stepper motor without any down gearing. This combined with
microstepping should be ample precision to exceed the needed specification. At a
price of 40.23$, this stepper motor is the most expensive of the four researched
stepper motor options. Since this motor is unipolar, it will provide significantly less
torque than the other bipolar stepper motors This could be a potential issue if the
tonearm assemble needs extra torque to move properly.

17

3.5.5.5 17HS19-1684S-PG19
 The Nema 17 17HS19-1684S-PG19 stepper motor is a bipolar stepper
motor with a 19:1 planetary gearbox. Normally this stepper motor would have a
step angle of 1.8 degrees, however the planetary gearbox brings the step angle
down to .094 degrees step angle. Even with no additional gearing and
microstepping, this stepper motor/gearbox combination requires no additional
modification to meet the step angle requirement. At the price of 26.88$, this
stepper motor is more expensive than the other NEMA 17 motors, but it comes
with the planetary gearbox making it fairly cost efficient. Using a gearbox
specifically made for a specific motor is the simplest solution for stepping down the
step angle of a motor without additional mechanical knowledge.

3.5.5.6 Stepper Motor Comparison
 For the purpose of this project, three stepper motors are required, two to
control the pitch of both arms and one to control the horizontal movement of the
arms. The pitch control motors do not need to be very precise, so the cheaper
motors should be sufficient. Therefore, the best option out of the five researched
motors for the pitch motors would be the NEMA 17 17HS16-2004S stepper motor.
The horizontal movement of the arms will be controlled by one very precise servo
motor. Due to the low cost of 26.88$ and the small step angle of .094 degrees. The
best choice of the five researched motors for the horizontal motor is the NEMA 17
17HS19-1684S-PG19 with 19:1 planetary gearbox.

 17HS16-2004S ROB-09238 PG35S-D48-
HHC2

26M048B2U-
V31

17HS19-
1684S-PG19

Step Angle 1.8 degrees 1.8 degrees 0.212 degrees 0.25 degrees 0.094 degrees

Number of
Leads

4 4 4 6 4

Cost 12.99$ 14.95$ 36.61$ 40.23$ 26.88$

Polarity Bipolar Bipolar Bipolar Unipolar Bipolar

Dimensions 1.7''x1.7'' 1.7''x1.7'' 1.378" Dia 1.030" Dia 42 x 42mm

Current
Rating

2A 330mA 250mA 110mA 1.68A

Table 3 - Stepper Motor Final Comparison

3.5.6 Motor Controls
 The stepper motor used in the project are controlled through four wires
connected to the motor. Each pair of these two wires connect each end of two
separate coils of the motor. To move the motor, both of these coils are controlled

18

by generating a current through each of the inductive coil. To move the motor is
more than one direction, this current must be able to be generated in either
direction. There are two suggested ways to accomplish this either through the use
of a pre-built stepper motor driver, or through a H-bridge circuit.
 Since there are two separate motors with 4 connectors each, it could be
considered to use 8 separate pins on the microcontroller. However, this is not
necessary. Because each of the motors are not required to move simultaneously,
four of the pins can be used by both of the motors with and additional pin used as
an enable for each of the circuits. This can be accomplished by using two and
gates and an inverted to turn off the Vcc that powers the motor that is not being
controlled. However, this method can be considered unnecessary due to the
chosen microcontroller exceeding the required pins for this project.

3.5.6.1 H-bridge
 One method to control the stepper motors is to use multiple H-bridge
circuits. H-bridge circuits allow a designated current to flow either direction through
an inductive load through the use of MOSFET transistors. H-bridges use two
control wires to control which direction of current flow. Since the chosen design for
this project requires three separate stepper motors each with two coils each, a total
of 6 H-bridge circuit would be required to control all the motors. Without using some
kind of ASIC, this method could become needlessly complicated and cumbersome.
However, this circuit is the foundation for many pre-built drivers that are currently
on the market.

19

Figure 3 - H-bridge Circuit Diagram

 Above is the circuit diagram for an H-bridge circuit. When Q1 and Q4 are
turned on, current will flow left to right through the motor's coil. Inversely when Q3
and Q2 are turned on, current will flow the other direction through the motor's coil.
Q1 and Q2 as well as Q3 and Q4 should never be turned on at the same time. If
this were to occur, the VCC and ground would be shorted, potentially damaging
the transistors. This is prevented by properly connecting connections A, B, C, and
D so that this never happens. If the current were to switch directions quickly, the
voltage across the inductive coil will generate an extremely large voltage,
potentially damaging the circuit. This is prevented by placing diodes across each
of the transistors.

3.5.6.2 Pre-Built Stepper Motor Drivers
 Rather than creating the H-bridge circuits to control the stepper motors,
another option is to use a pre-built stepper motor driver to control the coils of the
motor. Typically, these drivers use H-bridge circuits anyway to control the coils
inside the stepper motor. Using a driver not only simplifies the design but also
comes with the advantage of being able to "microstep" the motor. This
microstepping allows the motor to move less than a full step which allows the motor
to move at angle smaller than the step angle of the motor. This function is very
advantageous for this design, as being able to move in increments of small angles

20

is desired for this application. The project design uses three stepper motors to
move the tonearms, so three stepper motor drivers will be required in this project.

3.5.7 Stepper Motor Driver Selection
The goal of this section is to research a select group of stepper motor drivers

to find the best for this application. For the two different types of motors controlling
the tonearm, one or two different types of stepper motor drivers will be required.
The ideal driver should support microstepping to increase the precision of the
horizontal movement of the tonearm by decreasing the step angle. As a minimum
of three drivers will be required for this application, the ideal driver should be as
cheap as possible to lower the overall price of the project.

3.5.7.1 V44 A3967
 The V44 A3967 stepper motor driver allows for up to 8th step microstepping.
This driver can support stepper motors with 4, 6, and 8 control leads. This is
beneficial, but not useful for this application as the stepper motors chosen for this
application all use 4 control leads. One downside of this driver it does not come
with pre-soldered pins which may cause some difficulty during the breadboard
testing.

3.5.7.2 A4988
 The A4988 stepper motor driver carrier allows for up to 16th step
microstepping. Of the three researched motor drivers, this driver supports the
highest degree of microstepping. While not completely necessary to meet the
precision requirements for this application, this high degree of microstepping will
be useful to reach a great deal of precision. The vendor for this driver also gives
options for pre-soldered pins, allowing for easier breadboard testing/debugging.

3.5.7.3 L293D
 The L293D dual H-bridge driver for DC and Stepper motors is designed to
drive a current through an inductive load in either direction. Unlike the other drivers
researched for this application, the L293D does not support microstepping. This is
made up for by being the cheapest of the three options at a price of 2.95$. Because
of the lack of microstepping, this driver is not suitable for driving the horizontal
stepper motor. However, because of the low price, this driver could be suitable for
the pitch motors.

3.5.7.4 Stepper Motor Driver Comparison
Because of its affordable price, adequate power consumption, and its ability

to support microstepping of up to a 16th step, the A4988 was the selected stepper
motor driver for this project.

21

 V44 A3967 A4988 L293D

Supported Leads 4,6,8 4 4

Microstepping Yes, 8th step Yes, 16th step No

Cost 6$ 5.95$ 2.95$

Operation Range 3-5.5V 8-35V 4.5-36V

Current Output 750mA 1A 600mA

Table 4 - Stepper Motor Driver Final Comparison

3.5.8 Electromagnetic Clutch
 When playing a record, the horizontal movement of the tonearm should not
be held completely in place. Unfortunately, the detent torque of the horizontal
stepper motor will hold the arm in place even when the coils are not energized.
One method to counter act this is to use an electromagnetic clutch to disengage
the motor with the mechanism holding the tonearm while the record is playing. The
motor selected to control the horizontal movement of the tone arms is 8mm.
Therefore, the electromagnetic clutch desired for this application should have a
bore size of 8mm.

3.5.8.1 Tiny-Clutch M50
The Tiny-Clutch M50 magnetic spring clutch is a high torque capacity spring

clutch with the control of a conventional electric clutch. This clutch has a Bore size
between 1/8'' and 5/16''. This clutch has a max torque of 2.8Nm and a max speed
of 3000RPM which is significantly higher than this project could possibly need. The
biggest problem with this clutch is that there is no vendor which this clutch can be
easily purchased from.

3.5.8.2 Micro EM Clutch 2.5
The Micro EM Clutch 2.5 is a Bi-directional electromagnetic clutch. It can

obtain speeds up to 300 RPM which is much more than required for this
application. This clutch also has a bore size of 6mm. This clutch operates at 24V
and 3.4 Watts so there would need to be some form of voltage amplification if it is
desired to run just from the microcontroller. Like the previous clutch, there is no
vender which this clutch can be easily purchased.

3.5.8.3 102-02-13
The 102-02-13 electromagnetic clutch operates at 24V so there would need

to be some form of voltage amplification if it is desired to run just from the
microcontroller. This clutch has a bore size of 8mm and a maximum torque of
.4Nm. This clutch can run at a max speed of 10000 RPM which is much more than

22

the required speed for this application. Like all the previous clutches, there is no
vendor which this clutch can be easily purchased.

3.5.8.4 Electromagnetic Clutch Selection
The table below shows a comparison of the three clutches researched for this

project. Although any of these clutches would be suitable for this application, none of the

clutches have a vendor which could prove problematic attempting to purchase one of them.

All three clutches operate basically the same way and have very similar dimension and

bore sizes. All three would be suitable in terms of max torque and max rotational velocity.

However, the M50 appears to have the highest max torque and would be the clutch of

choice if a suitable vendor is found. Fortunately, a suitable clutch was supplied for free.

This clutch is the Ongura FMC 10-27. This clutch meets all the required specifications as

well as being free.

 M50 MIC-E 102-02-13

Bore Size 1/8''-5/16'' 6mm 8mm

Dimensions 1.25''x1.17'' 29x26x4mm 39x39x18mm

Max Torque 2.8Nm .25Nm .4Nm

Table 5 - Electric Clutch Final Comparison

3.6 PCB

A PCB (short for printed circuit board) is just that, a circuit board that is
printed. Rather than loose wires connecting circuit components, all connections
are manufactured into the board. This allows for more reliable circuits. This
following section outlines the parts and key features of a PCB.

3.6.1 PCB Layers
A PCB is made up of many layers of material that are made into a single

object through heat and adhesive. Each layer serves a specific purpose. The main
layers involved are a Silkscreen, a Soldermask, Copper, and a Substrate.

3.6.1.1 Substrate
The substrate, usually made out of fiberglass, is used to give the PCB its

rigidity and thickness. Usually a PCB ranges from .8mm to 1.6mm thick. The
material that is used for most substrates is “FR4”. FR4 can be more expensive
than other substrates, but it is much more durable. FR4 is also less likely to melt
when a soldering is held too long on the board. FR4 actually describes the grade
of the glass-reinforced epoxy laminate used in manufacturing, and the “FR” stands
for flame resistant.

23

3.6.1.2 Copper
The copper portion of the PCB is a thin foil of copper that is laminated to the

board using heat and adhesive. Many PCBs are double sided, meaning that this
copper foil is applied to both sides of the substrate. PCBs can have 1 to 16+ layers,
meaning that there are more and more layers of substrate and copper. The
thickness of the copper is different from manufacturer to manufacturer, but it tends
to be specified by weight (ounces per square foot). Most PCBs have 1 ounce of
copper per square foot, but PCBs that need to handle higher power would have a
thicker layer of copper. Every ounce per square foot corresponds to roughly 35
micrometers.

3.6.1.3 Soldermask
The soldermask is the layer that is on top of the copper foil. For most PCB

manufacturers the soldermask is green, though it can be a variety of other colors.
This layer is on top of the copper in order to help insulate the copper from
accidental contact with solder or some other metal. Whenever a piece of solder
connects two pieces of a circuit, it is called a solder bridge. A solder bridge being
out of place can ruin a circuit, so the solder mask is an extremely important layer
of the PCB. It also helps the person responsible for soldering components onto the
PCB solder to the correct places. The least expensive solder masks are an epoxy
liquid. Other types are liquid photoimageable soldermask and are sprayed on the
PCB

3.6.1.4 Silkscreen
The silkscreen layer is placed on top of the soldermask. This layer adds

letters, numbers, and symbols onto the visible side of the board in order to make
assembly easier. It can also make it easier for a user to understand the board. The
silkscreen is usually used to label pins, leds, part numbers, warnings, descriptions
of the board as a whole, or even company logos. The silkscreen can be any color
(usually white), though the same color is used on the whole board. The silkscreen
does add to the cost of the PCB, however, so it shouldn’t be used unless
necessary.

3.6.1.5 Layer Stackup
Though the layers described above make up the layers of a PCB, some of

these layers can be repeated to make a multi-layered PCB. These additional layers
make it possible to have more components and therefore more complex circuitry.
The following table shows how additional would be stacked to make a multi-layered
PCB design. The following table shows how the layers of the PCB are stacked
during the manufacturing process.

24

Layer Number Layer Description

1 Top Silkscreen

2 Top Soldermask

3 Layer 1 Copper

4 Substrate

5 Layer 2 Copper

... ...

n – 1 Substrate

n Layer n Copper

n + 1 Bottom soldermask

n + 2 Bottom Silkscreen

Table 6 - Multilayered PCB Design

As this table shows, copper and substrate layers can be stacked again and again
between the outer layer to add more and more depth to the PCB.

3.6.2 Component Packages
There are multiple types of packages that each component can come in,

and these different packages come with their own advantages and disadvantages.
The main types of packages used are thru-hole packages, SMD packages, and
BGA packages.

Thru-Hole packages are the component packages that are used most often
when prototyping circuits, but is still used in finalized products. These components
have pins that are meant to be inserted through a plated hole in the printed circuit
board. On the opposite side from which the
component was inserted, the component is
soldered in order to semi-permanently
secure the device onto the board. An
advantage of these thru-hole packages is
that the component can be removed
melting the solder that attaches the pin to
the board. Thru-hole packages, however,
do make boards more expensive to
produce, as they require the boards to be
drilled. In modern PCBs, thru-hole
packages tend to be used for larger
components such as electrolytic capacitors.

Figure 4 - Thru-hole Diagram

25

SMD packages, short for surface mount device, are components that are
soldered on the same
side of the board that
the component was
placed on. This is
advantageous because
these components can
be mounted on both
sides of the board.
Additionally, these
devices are smaller than
thru-hole components,
which can allow for the
whole board design to
be smaller. Because
SMDs are smaller and
mounted directly onto
the board, these devices
perform better under vibration conditions. Because of their size and because
holes don’t need to be drilled onto the PCB to mount them, among other reasons,
these packages tend to be cheaper to manufacture.

BGA, or ball grid arrays, are used to permanently mount devices, such as
microprocessors. BGAs tend to be used for high-density pin ICs. Soldering these
to a PCB requires specialized machinery because the pins are made of solder balls
that have to be melted in order to make an electrical contact with the pads. The
components are very popular in hardware like motherboards and video cards.

3.6.3 Other PCB Terminology
PCBs are a very complex technology, and a lot of research was done on

how to develop a PCB for this project. While researching PCBs, many new ideas
had to be learned. This section defines some key ideas that were learned in
researching PCBs.

3.6.3.1 Pads
The pad is the portion of exposed metal on the surface of the PCB that the

component is soldered to. These pads mechanically support the components that
are connected to them, and also provide a connection to the board (and therefore
the rest of the components). There are two types of pads – thru-hole and SMD –
each of which accommodates a different component package type. The thru-hole
pads have holes in the circuit board while the SMD pads don’t.

3.6.3.2 Copper Tracks & Vias
Copper tracks are conductive paths that connect multiple points in the PCB.

The widths of these copper tracks varies based off of the current that would flow

Figure 5 - SMD vs Thru-Hole Size Comparison

26

through the copper track. In very high frequency devices, the width of the track can
play a large role in the performance of the device.

Plated holes holes in the board that have an annular ring that is plated all
the way through the board. Plated holes are used whenever components located
on different layers of the PCB need to be connected. These connections between
the layers of the board can also be called a via, which stands for Vertical
Interconnect Access. Technically, a via is a plated hole that allows for current to
be passed through the board. Tented vias have a soldermask covering over them.
This protects them from being soldered to accidentally. Untented vias are not
covered, and are often used for components that might need soldering later. Most
vias will connect from the top layer to the bottom layer.

There are blind vias, however, that connect from an external layer and end
on an internal layer. It is possible to see if a via on a PCB is blind by placing it
against a source of light. If the light can be seen through a via in the PCB, it is a
through-hole via. Otherwise, it is a blind via. Blind vias help to conserve space
when making PCBs with many components. Buried vias are similar to the blind
vias, except the via starts and ends in an internal layer of the PCB. Like the blind
vias, buried vias are helpful in preserving space on the board. In the figure below,
a through-hole, blind, and buried via are depicted from left to right.

Figure 6 - Thru-hole, blien, and buried vias

3.6.4 PCB Design Software
Autodesk’s Eagle application will be used to design the PCBs for the Vinyl

Player 2.0. This software facilitates in designing the schematic for the circuit to be
manufactures, as well as placing the components in a way that makes sense. The
schematic design portion of Eagle works similarly to many circuit simulator
softwares such as Multisim and LTspice. When a new schematic is made, a button
can be clicked that opens a window containing all of the elements that can be
placed on the circuit. This list contains thousands of components, as there are

27

many component types with slight variations that are listed for each manufacturer
that makes the component. Additionally, libraries of other components can be
imported into Eagle, which would add more components that are available for use.

To make a schematic, the components required for the circuit can be
selected one at a time and placed on the workspace. It is important to note that for
any given component, the package type and size for the component also needs to
be taken into account. Once the components have been placed on the workspace,
they can be moved, rotated, and arranged on the workspace to create a design
that makes sense using the many formatting tools offered by the Eagle software.
Once the components are laid out on the workspace, they can be connected with
wires in the schematic. Common connections can be named to make the
schematic as easy as possible for another person viewing the circuit to understand.
Once the schematic has been wired together, circuit components can be assigned
a specific value where applicable (i.e. resistors and capacitors).

After the schematic has been completed, the PCB board can be designed.
A button can be clicked that will generate a board file that contains all of the
components with their wiring as specified in the schematic file. An outline of the
maximum board size will be displayed, and each of the components can be
dragged and dropped in the space allotted. It is important to arrange these
components in a way that makes sense for the PCBs use case (i.e., IO pins on the
outside edges), as this file determines exactly how the PCB layout will be
manufactured. As the board is designed, specific layers can be specified for the
copper tracks, vias, and components. Additionally, holes that need to be drilled (for
mounting, etc.) and silkscreen to be applied are specified at this stage.

Once the board has been designed, the PCB can be finalized by choosing
the actual manufacturer for each component. Each component will have a different
price, quantity available, minimum purchase quantity, and perhaps different
specifications, so it is important to take note of these details. Also, some
components will have a one-time fee that needs to be made to purchase the
product. These fees can add up to make a big impact on the price of the PCB.
Once these details have been specified, each layer of the PCB design can be
exported as a Gerber file. This file type is a standard across the industry. Most
PCB manufacturers will have a website where a folder containing the PCBs Gerber
files can be uploaded to verify the design. Also, the website should provide a quote
of the price of the PCB.

3.7 Proximity Sensors
One of the main difficulties in making the record player play two sides of the

record is making the tonearm and stylus apply a consistent force onto the
underside of the record. When playing from the top of the record, gravity makes
the stylus to rest on the record. When playing from the underside of the record,
however, the stylus would need to assert the same the same force on the record
while working against gravity. Many ideas were discussed in achieving this, one of
which was using proximity sensors in a feedback loop in order to continually

28

measure the distance from the cartridge (which is attached to the stylus), thus
maintaining a constant force onto the record.

3.7.1 Proximity Sensors for Two-Sided Play
The main types of proximity sensors are Inductive, Capacitive,

Photoelectric, Retro-reflective, Diffuse, and Ultrasonic sensors. Inductive sensors
are only suitable for ferrous targets, and since the target (vinyl record) is not ferrous
they were not researched further. Also, since Photoelectric, Retro-reflective,
Diffuse, and Ultrasonic sensors aren’t as appropriate for close-range detection,
Capacitive sensors were the main devices researched.

Capacitive sensors have two conduction plates at different potentials in the
sensing head. The plates are connected to an oscillator, a Schmitt trigger, and an
output amplifier, creating an output signal when the capacitance of the two plates
increases from an object entering the sensing zone. One disadvantage of
capacitive sensors was the slow response time from the device sensing a nearby
target to outputting a signal. To maintain a constant force on the record from the
arm, a quick response time is crucial. Also, though these sensors can be very
accurate, their cost can be high. In the end, it was decided that other methods
were more reliable for maintaining a constant force on the record when playing
from the bottom side.

3.7.2 Proximity Sensors for Tonearm Calibration
Another potential use for proximity sensors is in calibrating the motor that

would control the tonearm’s radial motion. Initially, the motor would move the
tonearm to the user’s inputted location on the record. Once the tonearm has been
placed, however, the motor would disengage from the tonearm, allowing it to move
freely. As the record turns, it would slowly move the tonearm. Then, when the user
gives input to the app to change songs, the motor would re-engage the tonearm
and would no longer have a reference of there the tonearm is along the record.
This would then require the motor to recalibrate in order to regain its bearing. One
idea for how to accomplish this is to add a proximity sensor on the outside edge of
the record and moving the tonearm to this proximity sensor after every time a song
is chosen. Once the proximity sensor registers the tonearm, a signal would be sent
to the controller indicating that the tonearm is at the outside edge. From their, the
tonearm would be moved and lowered as usual.

Because extreme precision for this case is not necessary for this
application, photoelectric sensors were the main proximity sensors researched for
this application. Though there are many variations of types of photoelectric
sensors, all have a source that emits light, a photodiode or phototransistor that
detects the emitted light, and an amplifier to output the signal.

3.7.2.1 Through-beam Sensors
In a through-beam photoelectric sensor, the emitter and the receiver are

separate and installed across from each other. The emitter continually sends a

29

beam of infrared light to the receiver, and the target would move somewhere
between the two. If the target passes through the beam of infrared light, the
receiver no longer receives the signal and therefore outputs a signal to the
controller. These sensors are very reliable and accurate. The main draw-back of a
through-beam sensor is that it would require the installation of two separate
devices. Especially since the sensor cannot be housed within the record player, it
would be ideal for the sensor for calibration to be as unobtrusive as possible.

3.7.2.2 Retro-reflective Sensors
Unlike the through-beam sensor, retro-reflective sensors have both the

emitter and the receiver are located in the same housing. The emitter sends a
constant beam of light, which is projected off of a reflector, causing the beam to be
aimed at the receiver. Like the through-beam sensor, a constant beam of light is
provided to the receiver, and an output signal is generated whenever that signal is
broken. This occurs when the target disrupts the laser that is between the emitter-
receiver pair and the reflector. Retro-reflective sensors have accuracy similar to
through-beam sensors. The fact that the emitter and receiver are housed together
does provide the benefit of being able to wire them together; nevertheless, this
solution would require two sets of devices to be set up at two different spots on the
record player, which is not ideal.

3.7.2.3 Diffuse Sensors
Like the retro-reflective sensors, the emitter and receiver are housed in the

same device for diffuse sensors. In diffuse sensors, however, the target acts as
the reflector. So, the emitter sends out a beam of light in all directions. If the target
enters the area where these beams are sent, the light reflects off of the target and
returns to the receiver. The receiver then outputs a signal to indicate that the target
is within range. While in the through-beam and retro-reflective sensors the beam
of light is constantly hitting the receiver, and the target is registered when the beam
is broken, the diffuse sensor works in the opposite way; the receiver doesn’t
register the beam of light until the target moves in range. Though these sensors
can be slightly less reliable and accurate when compared to the through-beam and
retro-reflective sensors, they have the advantage of being located in one compact
device. For that reason, the only photoelectric sensor models that were researched
further are diffuse sensors.

3.7.2.4 OT 18 M 1000 N4-B4
The OT 18 M 1000 N4-B4 sensor is a diffuse reflective sensor. It has a

screw design and emits an infrared light. It has a operating distance of 1 mm, which
is appropriate as a calibration sensor for the Vinyl Record 2.0. The sensor does
have high power consumption, operating at 24V DC and about 30mA. Sensitivity
can be adjusted through a potentiometer, and has a switching output of 100 mA.

30

3.7.2.5 KT10-8-H-8

The KT10-8-H-8 is also a diffuse sensor with a screw design that emits
infrared light. It has a detection range of .5mm to 10mm. A major disadvantage of
this device is that it requires a signal transformer, so this device will not be used.

3.7.2.6 LDC0851
The LDC0851 Differentially Compensated and Highly Accurate Inductive

Switch is ultimately the sensor chosen for this project. This sensor gives an active
low output when a conductive material gets near the inductive coils. Since the
tonearm of the record player is conductive, this sensor will trigger when it reaches
the default location during the tonearm calibration. Samples of this IC were
provided for free by Texas Instruments.

3.8 Bluetooth
We are using Bluetooth technology to enable communication between our

smartphones/tablets and smart vinyl player. Bluetooth will be able to transmit the
commands (media controls, power, track selection, etc.) and information from our
mobile application to our vinyl player. The microcontroller unit on the vinyl player
should be able to interpret and process the given commands from our mobile app
and perform the necessary actions. In the following paragraphs we are going to be
discussing the different flavors of wireless communication, the pros and cons of
each technology, and why we chose to use Bluetooth.

3.8.1 Bluetooth Adoption
Bluetooth is one of the most commonly used technologies for mobile
communication. Bluetooth’s flexible and robust system ensures a strong and
reliable connection with any Bluetooth enabled device. Any Bluetooth device must
be evaluated and registered by the Bluetooth Special Interest Group to ensure
standard practices and protocols are being followed. Ultimately, this means that
every Bluetooth enabled device will be compatible and work as expected. It makes
sense for us to utilize Bluetooth technology because we will be able to market our
product to a wide audience of mobile users.
 Many companies have integrated Bluetooth technology into a variety of
devices like smartphones, tablets, microcontroller units (MCU), etc. This means
that there is a wide range of devices that we can use to interface with our smart
vinyl player. This gives us some flexibility in choosing which environment we want
to develop our mobile application, Apple or Android or Windows. Our mobile
application must interface with a compatible MCU to receive and process our
commands. We also require a compatible MCU to interface with our mobile
application. Many manufacturers (Raspberry Pi, Arduino, Texas Instruments) offer

31

cheap MCUs with Bluetooth enabled technology, giving us a wide range of options
to choose from.

3.8.2 Bluetooth Documentation
Since Bluetooth has been widely adopted for mobile communication, there

is a great amount of support and documentation from the Bluetooth SIG and third-
party developers. The Bluetooth SIG outline the requirements, design
specifications, and constraints of a Bluetooth enabled device. Every Bluetooth
enabled device must be certified through BT SIG. Bluetooth standards are
beneficial because they ensure that every Bluetooth enabled device is compatible
with each other. They also provide useful information about the capabilities that
Bluetooth has to offer like profiles, protocols, and Assigned Numbers. Having this
information readily available to developers makes it easier for us to learn and
understand the features of Bluetooth, consequently, making our applications much
more efficient and easier to use.
 Apple and Android provide information and resources about their Bluetooth
APIs that developers like us can reference as we develop our mobile application.
The documentation provides information and examples on how to implement
Bluetooth functionality in the most efficient way possible. Some of the features
noted inside the documentation include Bluetooth setup, connecting two devices,
device discovery, and necessary permissions. Important topics to note as we begin
developing our mobile application to connect to the smart vinyl player.
 Developers have been working with Bluetooth for a long time. Seasoned
developers understand the ins and outs of Bluetooth and how it operates. Because
of their past experiences, they are able to analyze a problem and provide a hint or
solution to a problem. All of their hints and solutions can be documented on forums
like stackoverflow. Developers new to Bluetooth can reference the past problems
and solutions to solve their current problems, speeding up Bluetooth development.
We are going to have problems as we develop our mobile application to
communicate with our smart vinyl player through Bluetooth. We will most likely
encounter a problem that another developer has faced before and be able to refer
to someone’s solution rather than solving it on our own.

3.8.3 Bluetooth Network Topologies
There are different types of Bluetooth technology that exists for different

scenarios. There is Bluetooth Low Energy (BT LE) Broadcast which establishes a
one - to - many device communications. This mean that we can turn a single device
into a beacon that would transmit information to multiple devices. This network
topology doesn’t apply to our project because our phone/tablet isn’t meant to
communicate with multiple devices, just one vinyl player. The next one is BT LE
Mesh which establishes a many - to - many device communications. This
translates into multiple device communicating with multiple devices at any given
moment. This topology doesn’t apply to our particular case because we only need
a one - to - one device communication. The two network topologies that would
apply to our particular case would be Basic Rate/Enhanced Data Rate (BR/EDR)

32

and BT LE Point - to - Point. Both of these topologies offer a one - to - one device
communication, perfect for our scenario. Both of the topologies fit our requirements
but they both have their advantages and disadvantages.

3.8.4 Bluetooth Redundancy
Bluetooth has redundancy features (error correction) to mitigate any loss of

data when transmitted to another Bluetooth enabled device. Transmitted data can
be corrupted or lost due to external factors like interference from other Bluetooth
enabled devices or radio frequencies. BT redundancies ensure that our mobile
device can effectively communicate and transmit data to our smart vinyl player.
For a good user experience, the user should be able to transmit commands
(media/speed controls) with no delay or error. The mobile device should also be
able to transmit record information (# of songs on the album, duration of the songs,
album name, etc.) to the microcontroller unit (MCU) where the MCU will process
the information and execute the corresponding commands. If the MCU was given
garbage inputs, the MCU will produce garbage outputs and execute the wrong
commands, possibly disturbing the user experience or destroying the vinyl player.
 Bluetooth provides two error correction schemes (forward error correction
code (FEC) and automatic repeat request (ARQ)) to protect against data loss.
There currently exists ⅓ FEC and ⅔ FEC schemes that corrects against errors. ⅓
FEC works by repeating each bit three times. ⅔ FEC encodes data using the
(15,10) shortened hamming code. In the (15,10) scheme, 10-bits are used for
information and 5-bits are for error correction. This allows correction of all single
errors and detection of double bit errors. In the ARQ scheme, the transmitting
device continues to transmit packets until it receives an acknowledgement from
the receiver that it has successfully received the packet.

Error correction is very useful to mitigate any unforeseen issues/ data
losses in congested environments but they add overhead to each packet, reducing
the overall throughput.

3.8.5 Bluetooth Security
Bluetooth achieves device connection and data transfers using radio

waves. Unfortunately, this make Bluetooth susceptible to being hacked. Hackers
could interrupt or disrupt the signal and hijack the Bluetooth enabled device. What
this means is that random users could block your connection from the mobile
device to the smart vinyl player or worse, hack into your vinyl player/smart phone
and play unwanted songs or steal personal information. Luckily, Bluetooth SIG and
device manufacturers have developed security features to mitigate any
unwarranted access. Bluetooth utilizes five security services; confidentiality (only
authorized devices can access and view transmitted data), authentication (verify
the identity of Bluetooth devices by their address), message integrity (verification
of transmitted data), and pairing/bonding (creating and storing shared secret keys
for subsequent connections) procedures to provide basic and foundational
security. Any other means of security will be provided by the manufacturers of the

33

Bluetooth enabled device. You can also make your Bluetooth enabled device “non-
discoverable” to stop any Bluetooth connections.

3.8.6 Bluetooth Android Development
 We have chosen to develop our application in the Android environment
because Android provides well documented resources on their software & APIs,
better integration support for third-party software, wide variety of debugging and
simulation tools, java based syntax, and our team only have PCs. This makes it
easier to begin software development because of the reduced learning curve and
ease of access to resources and support from the open-sourced community. This
allows us to create a feature rich and efficient application and increase the success
of our project. Androids Bluetooth Low Energy API provides a guide to setup
Bluetooth, establish a connection between two devices, transmit data between the
devices, and finally close the connection.
 The first thing we are required to do is setup the Bluetooth permissions on
our device in order to communicate (request a connection, accept a connection, or
transfer data) with other Bluetooth devices. We must declare
“android.permissions.BLUETOOTH” and if we require device discovery or
manipulation of Bluetooth settings, “android.permissions.BLUETOOTH_ADMIN.”
We would only like our mobile application to connect to Bluetooth Low Energy
devices only, so we must declare “android.hardware.Bluetooth_le.”
 The second thing we need to is verify BT LE is supported on our mobile
device. However, today’s smartphones and tablets come standard with BT LE and
the device we’re using will have BT LE support. However, we need to check in
case an older device wants to try to use our smart vinyl player. The next thing
would be to obtain the “BluetoothAdapter” class on the mobile device and check if
the mobile device has Bluetooth enabled.
 The next step is to search/query for Bluetooth Low Energy enabled devices.
You would call the “startLeScane()” method to search for any BT LE enabled
devices. In order to preserve power, stop scanning when you find the target device,
never scan on a loop, and only scan for a predetermined amount of time. You have
the option to scan for specific type of peripherals by scanning for specific
universally unique identifier (UUID).
 Once you have found the device, you can now begin connecting to it. To
connect to the Bluetooth enabled device, you are connecting to the device’s
Generic Attribute (GATT) profile server, the GATT profile defines how the device
works in the particular application. To enable connection with the GATT server,
you call upon the “connectGatt()” method. In our project, the phone (GATT client)
will call the “connectGatt()” method and initiate a connection with the smart vinyl
player. If successful, the smart vinyl player will return an acknowledgement to the
GATT client that the connection was successful. We can begin transmitting
information, attributes about the GATT profile, and any status changes to the
Android application.
 Once we are done communicating with the smart vinyl player (finished
listening to music), we should end the communication between the two devices.
Doing so will preserve battery power and allow the mobile device to connect to

34

other Bluetooth enabled devices. To break up the Bluetooth connection, we would
call the “close()” method and the application will end the connection with the GATT
profile server and release the occupied resources.

3.9 Mobile Communication Technologies

There are many types of wireless communication technologies on the
market today which gives us a range of options to choose from. We are going to
identify the most prominent features of each technology and weigh the costs vs.
reward of each technology and decide the best fit for our project.

3.9.1 Bluetooth Table Comparison
Below is a table that are comparing four different mobile wireless

technologies that exist today. Each one of these technologies have key
features/components that pertain to our goals outlined in the “house of quality.”
Bluetooth Low Energy is the newest generation of Bluetooth that exists on most
modern mobile technologies. BR/EDR is the foundation of Bluetooth with many
generations of upgrades that make it relevant in today's technology. A promising
technology created by WiFi Alliance to compete with Bluetooth technology. It is a
promising technology that easily rivals Bluetooth and you can see why in the table
below. NFC is another wireless mobile technology that currently exists in the
market. The table below might discourage the use of NFC but they do have a place
in today’s market.

Table 7 - Bluetooth Comparison

 Low Energy BR/EDR Wi-FI Direct NFC

of Channels 40 79 N/A N/A

Operating
Frequency

2400 - 2483.5 MHz 2400 - 2483.5
MHz

2400 MHz & 5000
MHz

13.56 MHz

Powered by Coin
cell battery

Yes No No N/A

Current
Consumption

< 15ma (read and transmit) N/A N/A < 15ma (read)

Throughput 1 Mbps ≥ 2Mbps ≤ 250 Mbps 106 - 424 Kbps

GATT Profile
Support

Exclude HSP, OBEX, A2DP,
VDP, FTP

Everything N/A N/A

Required Pairing Yes Yes Yes No

Standby time .6 - 1.2 ms 22.5 ms N/A N/A

Connection time 3 ms ≤ 100 ms N/A ≤ 100ms

Range Up to 100M Up to 100M ≤ 180M 10 - 20 Cm

Android & Apple
Support?

Yes Yes No Yes

35

Security 128-bit AES E0/SAFER+ 256-bit AES Limited

Backwards
Compatibility

Yes Yes Yes N/A

Cost of Tag $5.00 N/A N/A $0.10

3.9.2 Bluetooth Legacy
Bluetooth was formally introduced in May of 1998 and since then every BT

generation has been evolving to include faster speeds, more features and better
reliability/robustness. That is why Bluetooth 4.x has become the standard for mobile
devices. For our project, we have decided to develop with Bluetooth 4.x (4.2 to be exact)
because of its speed and reliability as well as the low power consumption. Our mobile
application would be compatible with older generations of Bluetooth due to the built in
backwards compatibility developed by BT SIG but connecting to older version of BT could
hinder our goals outlined in the “house of quality.”
 The following table outlines the most notable features from different generations.
The following generations inherit most of the notable features and protocols but can be
dropped if they interfere or clash with another feature. The most notable feature that we
have to outline from BT 4.x was the Low Energy mode and single-mode and dual-mode
chips. Both single-mode and dual-mode offer lower energy options but the difference
between the too is cost. If we need to lower costs, we can choose the single-mode chip
but will be limited to low energy options. However, having dual-mode, we can switch
between low energy low throughput for efficiency and change to BR/EDR if we require a
higher throughput (higher power consumption).

Bluetooth Generation Features Description

BT 4.x

Low Energy Powered by coin cell battery

Dual Mode BR/EDR and Low Energy support

GATT & SM
Generic Attribute profile, Security
manager

AES Encryption

Security Update

Internet Protocol Support Profile Allows connection to the internet

Single-mode chips
Low power idle operation, device
discovery, lightweight link layer, etc. at
the lowest cost

BT 3.x

Alternative MAC/PHY (AMP) Bluetooth + 802.11 supports 24Mbps

Unicast Connectionless Data
Sends data without establishing
L2CAP channel

36

L2CAP enhanced modes
Enhanced Retransmission mode that
implements L2CAP channels

Enhanced Power Control

Removes inefficiencies and ambiguity
caused by open loops power control
and EDR modulation schemes and
adds closed loop power control

Table 8 - Bluetooth 4.x Features

3.9.3 Bluetooth Final Table Comparison
Each one of these technologies has features outlined in the “house of

quality.” Some of the biggest features to note from the house of quality is cost,
power consumption, range, and throughput. Other features that we would like to
note is Android support, backwards compatibility, and network connection. These
are the features that would complement our smart vinyl player and make it
enjoyable for the everyday users.

After careful consideration, we have chosen to go with Bluetooth Low
Energy for a variety of reasons. We have chosen BT LE because of its low power
consumption (15 mA), range (up to 100M), and excellent throughput (1Mbps). Our
reason for choosing LE vs. BR/EDR or Wi-Fi Direct was because of power
consumption. Bluetooth Low Energy consumes about 15 mA which is orders of
magnitude less than BR/EDR and Wi-Fi Direct. The throughput and range is
impressive on these two technologies but we are more concerned with power
consumption for our project. Wi-Fi Direct isn’t cross compatible with Android and
Apple which makes it an issue. NFC provides the lower power consumption, low
costs, and Android & Apple support we require but it's appalling range and
throughput makes it less ideal.

We had chosen Bluetooth 4.2 because it is the most versatile and updated
version of Bluetooth. Currently, it is the standard on all modern mobile devices.
However, the main reason we have chosen Bluetooth 4.2 because it offers low
energy power consumption and single/dual mode chips. The dual-mode chips
allows us to alternate between low power/low throughput and high power/high
throughput. We can switch modes depending on the current situation and whether
the situation calls for it. Unfortunately, this comes at a higher cost. Single-mode
chips offers only low power/low throughput but at the cheapest price possible, most
suitable for our project.

3.10 Computer Vision
A fundamental component to the Vinyl Player 2.0 software system is the

ability to take an image of a record label and recognize identifying information
about it . Incorrectly identifying the album, artist, release or other information that
is pulled from the label may result in the app showing the wrong information to the
user virtually rendering its functionality useless until the software system can
accurately fingerprint the record to be played. The field of interest for this task is
computer vision, which deals with processing, analyzing, interpreting digital
images.

37

3.10.1 Concepts & Algorithms
Becoming a field of interest in the late 1960s, computer vision has a plethora

of solution approaches to the same problem and a variety of implementations for
the same solution. Retrofitting the right concepts to the challenge of identifying
records can make the process much more streamlined and ultimately produce a
better product.

3.10.1.1 Viola-Jones Algorithm
The first object detection algorithm, the Viola-Jones algorithm proposed in

2001 by Paul Viola and Michael Jones is to this day one of the most powerful
computer vision algorithms in the world. Originally introduced to tackle the problem
face detection, this algorithm has been expanded to general object detection.
Some of the features of the Viola-Jones algorithm that make it one of the most
useful of its kind is its robust nature, simplicity and applicability to real-time
detection.

 The process of this algorithm can be broken into for four stages: Haar
feature selection, integral image creation, training of the system and cascading
classifiers. Haar features developed by Alfred Haar, a Hungarian mathematician,
are properties that are shared among all (or nearly all) of the instances of the object
that is trying to be detected.

Even though this technology is stable, supported and still popular today
there has been much research in the field of computer vision. This has led to other
more sophisticated solutions to the same problems that the Viola-Jones algorithms
solves and thus has shown a slow decrease in this technique's popularity.

3.10.1.2 Optical Character Recognition (OCR)
Optical character recognition (OCR) is the process of converting characters,

handwritten or electronically printed, contained in an image into "machine encoded
text". A subfield of pattern recognition, this collection of techniques is highly
applicable to the software system of the Vinyl Player 2.0 as the main goal is to
recognize text on the record label to identify the record that is going to be played.

The first step in optically recognizing text in an image is segmenting the
image so characters and words are isolated, thus making the image simpler to
analyze. A simple method of implementing segmentation is to "isolate each
connected component", where a connected component is a word or continuous
line of words. Once the image has been segmented the next step to OCR is to
perform some pre-processing on the segmented images to reduce noise that may
reduce the accuracy of the character recognition. A common pre-processing that
occurs is smoothing, which entails eliminating small gaps and reducing the width
of the segmented image. Another pre-processing technique is normalization, a
process that will render all the characters in an image to be on the same size,
rotation and slant.

 After simplifying the task of optical character recognition through
segmentation and pre-processing it is time to perform the actual classification of
the characters. An early method of implementing this task is known as pattern

38

matching or pattern recognition, which involves comparing the image to a stored
glyph, an elemental symbol intended to represent a character, pixel-by-pixel. This
method will have trouble when encountering new fonts, meaning it might not be
optimal for the Vinyl Player 2.0 seeing that it is almost guaranteed that a large
variety of fonts and styles will appear on record labels. A more sophisticated
method for performing the classification is feature extraction. This technique uses
features or piece of information that is common to the object that is being classified
instead of glyphs effectively improving the computational efficiency of the process.
Finding features to use for classification for a certain class of object is in itself a
step that needs to be taken with feature extraction. Multiple runs of classification
may be desirable to increase accuracy to OCR algorithm.

The final step in OCR is to perform some post-processing techniques to
again increase the assurance of the results of optical character recognition is
perform some post-processing. Grouping is a post-processing technique that
groups characters that are sufficiently close to each other to create words, a
technique that seems almost compulsory for this application. A post-processing
technique that might not be as necessary would be restricting the possible words
to a lexicon, the English language for example. While this can increase the
accuracy of the OCR process it fails to account for proper nouns, which is likely to
appear very often in the images that this software system will receive.

3.10.1.3 Deep Learning
 Perhaps the most cutting edge technology that is replacing the Viola-Jones
algorithm and other traditional computer vision techniques is deep learning,
specifically the usage of convolutional neural networks. CNNs is a class of deep
neural network, meaning that is has multiple hidden layers to represent complex
models and when coupled used in image recognition has been shown to highly
reduce error rate.

Using a deep learning approach as opposed to traditional programming are
two fundamentally different tactics to getting a software system to accomplish the
goal that is desired. Where traditional programming is virtually comprised of listing
rules that the program follows to determine whether the image that it is searching
for is there or not, programming with a convolutional neural network will simply be
giving it the program an architecture that can take in input from a dataset, declaring
what it is needed as output and allowing the system to learn and function on its
own. This is one of the greatest advantages when it comes to working with CNNs
because the system does not have to be altered every time there is a unique
scenario, as it adapts itself based on the dataset. The specific techniques and
tools that will be utilized to execute the deep learning implementation of the Vinyl
Player 2.0 computer software system are discussed in section 3.14.

3.10.2 Computer Vision Libraries
 All of the concepts and algorithms in the section above are core to the field
of computer vision and also have been around for quite some time, with many of
them being at least 20 years old. As a result of this the implementations of these

39

algorithms and concepts are very sophisticated, meaning it would be much more
efficient for the process of producing a computer vision application to use these
existing implementations instead of attempting to build every component from
scratch. This is the main incentive for utilizing libraries that provide easy access to
the functionality of these algorithms and concepts in their best form.

3.10.2.1 OpenCV
Started in 1999 as an Intel Research initiative, OpenCV is an pioneer

computer vision library that has a focus on computational efficiency and real time
applications. Due its long and influential existence this library is much more
comprehensive than its counterparts and has a huge community of around 47,000.

While being written in C and C++, OpenCV provides a number of interfaces
for developing in other languages and can run on multiple platforms meaning that
there would be no roadblocks developing an Android application using this library.
This collection of computer vision programming functions is also open-sourced and
released under a BSD license, which allows for free usage and alteration of the
source code. Another feature bolstered by OpenCV is it's sublibrary for general
purpose machine learning, Machine Learning Library (MLL). Seeing that training
has an equally important part as image detection and recognition in a computer
vision software system the MLL sublibrary provides a good infrastructure to for
building the system.

3.10.2.2 MATLAB Computer Vision Toolbox
MATLAB itself is not a library, but a matrix oriented programming language

developed in the 1970's and maintained by MathWorks. Like many programming
languages there is a vast variety of extensions to the language for specific
applications, where of course the Computer System System Toolbox is the library
for computer vision applications. Some of the key features of this toolbox is support
for deep learning, which a subset of machine learning, and object detection &
recognition, both central components to the software side of the Vinyl Player 2.0.
MATLAB is fairly simply to debug, highly documented and has a massive
community of about 2 million as of 2017, although with the vast amount of
applications of MATLAB it is likely that the community that specializes in the usage
of the Computer Vision System Toolbox is a mere fraction of that.

An issue with this approach is that MATLAB is proprietary software and thus
would require the purchase of a license and each individual toolbox, as they are
sold separately from the environment and programming language. Considering
student discounts and a minimum of one toolbox needed the lowest total cost for
a single member of the team to develop with MATLAB would be $39.00, which
may make this approach an unnecessary cost for this application. Another
drawback is that MATLAB is closed-source having the ability to alter the source to
adapt to the Vinyl Player 2.0 would not be a viable option and actual understanding
of the underlying functionality would be limited. In addition to MATLAB being
closed-source and pricey it is not a very portable and would require some extra
work to actually be used in an Android application.

40

3.10.2.3 Point Cloud Library (PCL)

PCL (Point Cloud Library), with its focus on 3D image and point cloud
processing, is another option of computer vision library. This modular library is
cross-platform and has been successfully deployed on Android, the development
platform for the Vinyl Player 2.0 software system. Similarly to OpenCV, this library
also uses a BSD license giving free control to cater the code to the purpose of this
application, yet PCL is not as highly documented as its contemporaries. A deficient
in documentation would mean that there is more of time and effort needed to
decipher the source code, a task that may not be the best use of resources.

As it was previously stated PCL has a focus on 3D images, which is an
aspect of the system that would be highly beneficial for robotics or some autonomy
application, but for the function of the Vinyl Player 2.0 this is an area that will most
likely be unused. Point Cloud Library's focus on 3D is also showcased through the
high emphasis on point cloud processing. A point cloud is a set of data points,
typically in a 3D coordinate system, which can be visualized from the camera.
Seeing that there is a sizeable focal point on 3D computer vision it would seem
that using it for the core of the Vinyl Player 2.0 software system is a misguided
step, as there are other libraries that more highly cater to this application.

3.10.2.4 SimpleCV

SimpleCV is unique from the other technologies mentioned thus far in that
it is a framework that builds off of other computer vision libraries instead of being
a library itself. Through aggregating other libraries, including OpenCV, this
framework gives an easy way to interact and gain the benefits of using multiple
libraries. The underlying functionality of all the libraries SimpleCV takes advantage
of is accessed through a relatively simple Python interface. The high level interface
provided by this technology would allow for quick prototyping of the computer
vision software component of the Vinyl Player 2.0 system. Fast and easy
prototyping coupled with the open-source nature of the framework and underlying
usage of robust technologies makes SimpleCV an attractive prospect, yet it is not
without its drawbacks.

 A limitation of using this high-level and user friendly framework is that
it is mainly designed for desktop applications and while all the underlying libraries
that are encompassed in SimpleCV can be utilized in Android development there
isn't much indication in the documentation that this platform is a strength of
SimpleCV. This could mean that the benefits of simplifying the creation process
may be offset by simply attempting to run the system on Android. Another issue
with using SimpleCV is a lack of community and documentation, which again will
stunt the development of the software, especially if the there is a need to work with
the source code of the Python interface. Also, it can be observed that even though
SimpleCV is open source, actual alteration of the source is limited as the
functionality is contained within the libraries that are contained in the framework
and not the framework itself.. So it seems that while the SimpleCv framework
provides a useful tool to get accustomed with some computer vision concepts and

41

prototype them quickly, using it for the actual implementation of a computer vision
system is not the best route to go.

3.10.2.5 Computer Vision Library Comparison
 While all of the computer vision libraries shown in this section can in one
way or another can be used has the tool that builds the system to pull identifying
information from a record label, it is clear that OpenCV is best and most reliable
library for this application. The dedicated and active community that grows every
day simply dwarfs that of PCL and SimpleCV. MATLAB also has a huge
community and great documentation, but of course the area that OpenCV defeats
this technology in is the price, or lack thereof. With all of this and also being more
comprehensive and often performing better than its counterparts, it is evident that
OpenCV should be the computer vision tool of choice for the application of the
Vinyl Player 2.0, as well as most other applications.

 OpenCV MATLAB's CV
Toolbox

Point Cloud
Library

SimpleCV

Supports
Android

Yes Yes Yes Unlikely

Cost $0 ~$39 per developer $0 $0

Community
Size

~50,000 2,000,000 (not
exclusively for
computer vision)

~5,000 12,000

Table 9 - Computer Vision Library Comparison

3.10.3 Datasets
One of the less glamorous parts of creating an image recognition, image

detection or just general computer vision software system is training the system to
give it some of knowledge of potential patterns in the data. The actual size of
training set to effectively give the computer vision solution new insight is highly
variable, but generally very large and more data is almost never a deficient to the
training process. A dataset that accurately represents the problem that is being
presented and gives the correct answers to that problem that the system can learn
from will give the system a backbone to build off of and is one of the best ways to
quickly and efficiently get the system outputting the desired results. There are a
variety of resources to obtain data, which can be categorized into open-source
preexisting datasets and datasets that are built from the ground up mainly for the
purpose of training your computer vision system.

42

3.10.3.1 Open-Source Datasets

One of the greatest problems when wanting to train a system is that it
typically requires a great amount of well annotated data to learn from. Creating a
dataset of this nature can be tedious and take a fair amount of time for a single
team, which is why publicly available datasets are such a great asset to the
community. There are a surplus of reliable open-source datasets with some of the
most popular being Common Objects in Context (COCO), Udacity, Open Images
by Google, ImageNet and many more than provide segmentation, classification
and many properties of an image than can be used for application.

Probably the biggest fault that these form of datasets have is that since that
in their nature they are just general datasets of many compiled images, they
generally will lack the full information that is desired for the computer vision system.
This aspect of publicly available datasets can actually detriment the training
because the data being fed does not fully represent the data expected. For these
reasons it is best not to fully depend of open-source datasets and use them to start
testing the algorithms of the system as opposed to using them for the fully matured
product.

3.10.3.2 Creating A Dataset

The much more painstaking, but rewarding option for gathering data to train
a computer vision software system would be to create a dataset from scratch that
is perfectly fits the challenge of the application. Proprietary datasets is what sets
apart some implementations from others and is typically needed for more complex
systems.

The simplest and slowest solution to creating a dataset, annotated in such
a way to optimize training of the model, is by just add training examples to the
dataset one by one with the correct annotations in mind. The process of creating
each individual training example (i.e. taking a picture of a record label) and
annotating it with the correct output (i.e. album name and artist) is absolutely not
a scalable technique as it is very time consuming, but will train the system to
produce exceptional accuracy.

Another method of creating a custom dataset to train the computer vision
system of the Vinyl Player 2.0 is to attempt to crowdsource data. This will almost
inevitably cause the quality of the data to go down, but greatly increases the
scalability of creating a custom dataset and reduces the amount of time to do so.
To minimize poor quality data coming when crowdsourcing the dataset it is
important to give some guidelines about the annotations of training examples in
the training set and potentially even use an annotation tool to provide an
environment that will allow the community to add to the dataset with a similar
format.

The creation of a custom dataset coupled with the use of publicly available
data is the general way to gather data that will be used to train the system. This is
also the method that will be used for the Vinyl Player 2.0 as there can be data
about records pulled from open-source datasets, but the ultimate goal of OCR on
a record label will require some more custom data.

43

3.11 Deep Learning
As discussed in the previous section, deep learning is one of the most

modern techniques that tackle the computer vision challenge of the Vinyl Player
2.0. Presented here are fundamental concepts that lead to the convolutional neural
networks, which is the class of neural network shown to work exceptionally well for
image recognition. Also showcased will be a discussion and comparison of all the
tools in contention for use in this application.

3.11.1 Concepts & Algorithms
Deep learning is encompassed within the field of machine learning and the

algorithms and techniques of this subfield have breathed new life into the machine
learning and AI as it has given the area many more practical uses. Just like with
many complex concepts and algorithms, the sophisticated field of deep learning is
built off of a number of smaller, slightly more intuitive ideas. These building blocks
are discussed below.

3.11.1.1 Artificial Neural Networks (ANNs)

An artificial neural network, also known as just neural network, is a system
that pulls inspiration from biological neural networks present in brains and uses
neurons as the building block for the network. A neuron is virtually a node that
receives one or more weighted inputs, representing dendrites, and produces a
single output, representing the axon. Each neuron will sum up all the weighted
inputs and apply an activation function to the result, which will define the output for
the node. The core structure of an artificial neural network is an input layer of
neurons, where the input into those neurons could be data from a dataset or data
taken from external sensors, a series of hidden layers consisting of neurons and
an output layer of neurons. The purpose of the hidden layers in an ANN is to
transform the input signal to produce new information about the input data and
move closer to the desired output.
 The true power of neural networks is the ability to take the output of the
network or expected value and determine if it matches the actual value, learn from
the experience and tune the network to perform better. This is done by updating
the weights of connections between neurons to better mold the results of the neural
network to the results of the dataset. Doing multiple passes of the training set into
the ANN will tune the weight values to very closely reproduce the actual value.

3.11.1.2 Gradient Descent

Gradient descent is an optimization algorithm for finding the minimum of a
function and is utilized in neural networks on the cost function, which represents
the accuracy of the neural network's output compared to the actual output. In the
mathematical calculation of the gradient there is a variable for the learning rate of
the algorithm, α, which determines how big of a step the weights of the neural
network take towards the values that will minimize the cost function. Learning rate,

44

α, is an important component of the gradient descent algorithm because if it is too
small then there will be a performance hit as there needs to be many iterations of
the algorithm for the weights to reach the desired values and inversely if the
learning rate is too large then there is the possibility that the algorithm will never
converge as the weights will always jump over the values that will make the cost
function a minimum.

A property of gradient descent is that it finds local minimums and not
absolute minimums, which in some problems could cause a non-optimal result as
the true minimum is not returned. This is not an issue when the cost function is the
squared difference of the actual value and expected value, which is the popular
choice for cost function, as this function only has one local minimum, meaning that
the optimization algorithm will always work towards the absolute minimum.

A method to remedy the issue of only locating the first local minimum in
gradient descent is a stochastic version of the algorithm, dubbed Stochastic
Gradient Descent (SDP). The main difference between the stochastic and
nonstochastic versions of gradient descent is that SGD updates the weights in the
neural network after each training example in a training set, whereas regular
gradient descent simply updates the weight after all the training examples in a
training set have gone. As stated before, the stochastic gradient descent method
avoids the problem of the algorithm stopping at local minimum. Performing SGD is
also surprisingly faster than the typical gradient descent due to not having to load
as much memory.

3.11.1.3 Backpropagation
Backpropagation is a process used in gradient descent to finalize taking the

step towards minimizing the cost function of the artificial neural network by
updating the weight of each connection. An impressive aspect of this algorithm is
that all of the weights are updated simultaneously. This property of
backpropagation is due to the fact that the cost function takes all the weights in the
network as a parameter and that new weights are found through first-order
derivation. By taking the partial derivative of the cost function with respect to each
variable weight in the neural network then all of the weights can be updated without
having to traverse the network.

3.11.1.4 Convolutional Neural Networks (CNNs)
Convolutional neural networks are a class of artificial neural network that

have exemplary performance when it comes to the fields of image recognition and
classification, which makes it an ideal deep learning system to use for the task of
performing optical character recognition on record labels to determine information
about the record.

A CNN is implemented through four steps with the first being convolution, a
process derived from the mathematical operation between two functions to
produce a new function that gives insight the other two did not. The main goal at
the convolution step of a CNN is to reduce the amount of data that needs to be
processed by the neural network, while keeping the important features of the

45

image and the spatial relationship in the pixel matrix that represents the image.
This reduction is done by performing convolution on the pixel matrix of the image
and a feature detector or filter which is a small matrix, typically 3x3, that when
convolved with the original image will produce a smaller pixel matrix that maintains
focus of the features that were outlined in the filter. In a convolutional neural
network the convolution layer will be a multitude of feature maps that will all take
the image from the training set and perform convolution to produce a multitude of
the images, each with a different feature focal point. Note that the features that the
filters in the convolution layer look out for are not determined by the developer, but
by the network itself, which again is one of the reasons why this technology is so
powerful.

While not as powerful of a step as convolution, the rectifier linear unit
(ReLU) layer is still an integral portion of the convolutional neural network
workflow. The ReLU layer is performed directly after the convolution layer and has
the purpose of increasing the nonlinearity in the pixel matrix of an image because
images themselves are highly nonlinear. This is executed simply by replacing all
negative pixel values with zero.

The next layer in a CNN is the max pooling layer, where the objective is to
reduce the dimensionality, allow for the CNN to avoid issues like distortion in an
image and prevent over-fitting. Max pooling is implemented by defining a spatial
neighborhood, 2x2 for example, and sliding it throughout the feature map that was
obtained from the convolution layer. The maximum value for each neighborhood
is obtained and put into a pooled feature map maintaining both spatial relationship
and important features.

Each pixel in a pooled feature map is what is used as input to an artificial
neural network, which will be the last step of the convolutional neural network
known as full connection. In the ANN contained within a CNN the hidden layers
are now known as fully connected layers due to the fact that while in a typical ANN
the nodes between layers did not have to be fully connected, in a CNN they do.
The main incentive of having an artificial neural network on the tail end of a
convolutional neural network is to use the features of the images to create new
properties of the image to give more insight about the classification of the image.
Just as with ANNs, each training example will run through the network, the
expected result will be checked against the actual result and the network will be
updated using this knowledge. Note that in a CNN will updates the features in the
convolution layer as well as the weights in the ANN.

All of these steps and processes make convolutional neural networks very
useful for problems of image recognition and classification, which is why these
concepts can be fitted very nicely for the implementation of the computer vision
component of the Vinyl Player 2.0.

3.11.2 Deep Learning Libraries
While most of the computer vision libraries discussed in the previous section

contain machine learning libraries, they are generally too low-level for an object
recognition system with deep learning at the center of it. This is remedied by a

46

number of deep learning libraries that assist in the creation of convolutional neural
networks.

3.11.2.1 TensorFlow (TF)
Conceived by Google Brain and originally released in 2015, TensorFlow is

one of the most popular machine learning software libraries out on the market
today. Due to its open-source nature and brand recognition, this library has a large
& active community, extensive documentation and plenty of examples to learn
from. The mass adoption of TF provides a strong incentive for its usage.

A majority of TensorFlow is written in C++ and CUDA, a programming
language developed by Nvidia for GPUs, but has APIs for several of the most
popular programming languages. It is important to note that even though there are
multiple APIs, all language interfaces besides Python are experimental and not
covered under the same "stability promises" that Python, which will ultimately add
complexity when attempting to utilize this library for Android development, whether
that be in the form of dependencies or making the CNN in Python and using a
native interface to use in the mobile app.

3.11.2.2 Theano
Theano is one of the oldest of the stable deep learning libraries being

around since 2007. Being a Python only library gives it similar complications as
other libraries when attempting to develop for mobile. Theano is built for numerical
computations optimization and is tightly integrated with the NumPy, a Python
library for scientific computation, which made this library desired for deep learning
in its inception.

 The biggest drawback of using the pioneer deep learning library
would be that it was announced on September 28th, 2017 that development of the
library would cease after its next release and that maintenance would stop a year
after that . Of course it is essential to take into consideration the longevity and
support of the underlying technologies when developing a software system of any
form and so this news greatly diminishes the incentive to use this technology for
the Vinyl Player 2.0.

3.11.2.3 Torch

This deep learning framework is infamous for being used both for Facebook
Research and DeepMind, prior to being acquired by Google.

Torch is unique from other deep learning resources in that it is based and
uses programming language Lua, designed primarily for embedded systems, as
opposed Python. While this aspect of the framework may give it advantages in
memory efficiency and easy to interface with C & C++, it also produces the issue
of having to learn a new programming language. The time learning a new language
is a resource that may be better allocated in other tasks, especially since this
framework is somewhat low-level and work require a deep understanding to build
all necessary components of the system.

47

3.11.2.4 Keras

With its first initial release in 2015, Keras is the second fastest growing deep
learning library behind TensorFlow. The library is written in Python providing and
uses the language as its main interface like most of the libraries discussed thus
far, but Keras sets itself apart by being is the most high-level of all the libraries.
This makes Keras the most user friendly and minimizes the steps to implement
common case neural network algorithms, while still allowing a user to dig into the
source and gain a better understanding or alter the existing code to better work for
the application.

 Another aspect of this highly adopted deep learning library is that it
can be layered on top of other deep learning libraries such as TensorFlow and
Theano. This is where the library thrives rather than being used for end-to-end
functionality. This feature could be very useful for the Vinyl Player 2.0 in that a
more powerful deep learning library such can be utilized, but can be implemented
at a high-level giving more time for non-common case components of the system.

3.11.2.5 Machine Learning Library Comparison
Due to the fact that Theano will no longer be developed on and will be

unsupported within a year timespan it must be the first to be withdrawn from
consideration. With the candidates that are left for choice of machine learning
library that will be used to implement a convolutional neural network for computer
vision purposes it appears optimal to go with the industry darling TensorFlow. The
main reasoning for this that this library is the most adopted by a wide margin and
the help that an active community coupled with good documentation is an a great
asset. The fact that Torch requires the studying of Lua also detriments its case for
being the library of choice, while Keras still could very well be used on top of
TensorFlow to simplify development.

3.12 Online Database

Once a new vinyl record has been correctly identified, the next step in the
software system of the Vinyl Player 2.0 is to obtain data about the record that is
seen in most modern day music players including song titles & lengths, cover art,
year of release, etc. This will be done by querying an online database using a
REST (Representational State Transfer) request from the server, which will
subsequently transfer the data to the android application.

3.12.1 Last.fm
Started in the UK in 2002, the purpose of Last.fm is to track the music that

a user listens too and subsequently act as a recommender system based on their
musical taste. The database contains around 12 million individual audio tracks and
is updated both via the Last.fm staff and through data transferred from the music
player the user is listening to music through. The latter method of adding songs

48

and albums to the Last.fm database is worrying as it relies on the user having their
digital copy of the music tagged correctly. This is not much a concern for most
users, creating the potential issue of displaying poorly tagged content in the
application.

 The usage of the Last.fm API is limited to those that have an API
account, which can be obtained simply by filling out a form. There are methods to
obtain information regarding a user, artist, track, etc. but the only real area of
concern for the Vinyl Player 2.0 is the albums. This is accomplished with the
"album.getInfo" method that has parameters for the artist name and album name
and returns an information about the album in a XML or JSON format. Some of the
information is the list of tracks in the album with a name and duration, in seconds,
for each track. Ultimately this API is a simple way to pull information about records
identified by the computer vision system, but is susceptible to bad data.

3.12.2 Discogs
Created in 2000 as a hobby project Discogs, short for discographies, is one

of the most extensive music databases to exist with over 9 million recordings and
150 million individual tracks. This database is used as the backbone for an online
marketplace for physical audio recordings of all formats. A majority of the
contributions to the database come from and are rated for accuracy by a large
community on the website, providing greater assurance for the authenticity of the
information that is seen. Discogs' API has clients for Python, Ruby, PHP and
Node.js and also utilizes REST requests for pulling information.

The focus that Discogs has on physical audio recordings is a quintessential
feature for the application of the Vinyl Player 2.0. The reason for the power of this
focus is due to the fact that there can be multiple vinyl releases for a single album
thus introducing a possible element of variance. Records for the same album can
have altered track listings, time lengths, cover arts, etc. for each different release
of the album and thus using the information from the most popular or first or most
recent iteration of an album may give inaccurate results.

Discogs fixes this issue do to the database storing all the different versions
of a vinyl record, or any audio recording, and giving easy access to all of them via
the API. It is done using a REST GET request for an album's "Master Release
Versions", which will return the list of all different releases for a single record in a
JSON format.

3.12.3 MusicBrainz
A community-maintained database for music metadata, MusicBrainz was

started in 2000 in response to GraceNote's Compact Disc Database (CDDB),
which charged users to lookup audio CD information on the internet. MusicBrainz
has a considerable size with 1.5 million releases and around 22 million individual
tracks. As stated before this database is community run like Discogs, but it appears
to be even more stringent on accuracy of content than its competitors, providing
style guides for preferred formatting of metadata and more strict community voting.

49

Development for the Vinyl Player 2.0 using MusicBrainz would go through
a XML web service. MusicBrainz also solves the issue of multiple releases that
correlate to a single record with the concept of a release group. MusicBrainz also
allows for a more in depth search with parameters such as instrument, record label,
place,etc.

3.12.4 Online Database Comparison
Since the main concern for the Vinyl Player 2.0 when querying the online

database is whether the record requested will be found, the main focus for the
selection of database relies heavily on number of entries in the database. This is
the reason why Discogs is the prime candidate to be utilized for this application,
not to mention that it allows for a more in depth information about a record due to
Discogs logging each individual release of a record.

 Last.fm Discogs MusicBrainz

of Individual Tracks
(millions)

~12 ~150 ~23

Supports Multiple
Releases Per Album

No Yes Yes

Data Format JSON or
XML

JSON JSON

Table 10 - Online Database Library Comparison

3.13 Market Research

An additional area that needed to be researched in making the Vinyl Player
2.0 was whether there was an actual demand for the product. Many see analog
record players as an obsolete way to consume music. There is, nevertheless, a
resurgence of this form of music consumption.

Vinyl record sales have been growing quickly lately; what’s more, sales
have been growing more and more quickly every year. According to Forbes, record
sales are “up about 18% in 2012, 32% in 2013 and 51% in 2014”. Record player
sales go hand-in-hand with record sales.

3.13.1 Similar Products
As a part of researching whether the Vinyl Player 2.0 is a viable product on

the market, it was also necessary to see if a similar product exists. While there are
countless brands and models of record players, there are fewer that can play both
sides of a record. The main feature that the Vinyl Player 2.0 introduces is the ability
to choose any song on the record without needing to move the tonearm manually.
No other products were found that offer this feature, but some other record players
that are new to the market are described below. Both of the products listed did very

http://www.businesswire.com/news/home/20130104005149/en/Nielsen-Company-Billboard%E2%80%99s-2012-Music-Industry-Report#.VZxoO_lVhBc
http://www.melodicrock.com/articles/industry-news/2014/05/07/nielsen-billboard%E2%80%99s-2013-us-music-report
http://www.nielsen.com/content/dam/corporate/us/en/public%20factsheets/Soundscan/nielsen-2014-year-end-music-report-us.pdf

50

well on crowdfunding sites, though they provide less features than the Vinyl Record
2.0.

3.13.1.1 LOVE Turntable
The LOVE turntable is a creative design for a turntable, where the device

turns on a stationary record rather than the record turning. The device can be
controlled through an app (power, volume, and rotation speed), has built-in
speakers, and is portable.

3.13.1.2 RokBlok
Similar to the LOVE Turntable, the RokBlok works on a stationary record.

Unlike the LOVE, however, the RokBlok doesn’t rotate around the record, but
rather rolls radially over the record, slowly moving towards the center. This design
makes the RokBlok very portable.

3.14 Application Server

 For the application to store user information and work with the music
database’s API, it will be necessary to set up a server. Whenever the user adds a
new record to their catalog, the application will send a request to this server to see
if that record’s information is already available in the server’s database. If not, the
server will send a request to the music database’s API, saves the information
locally on the server, and forwards that information to the user’s application.
 In setting up the server, the Framework, database, and hosting tools used
will need to be decided. The following section will expound upon these topics.

3.14.1 Server-Side Web Frameworks

Server-side web frameworks make it much easier to setup servers that can
respond to web requests, and to scale this servers as its use grows. While it is
possible to create a web server without using a framework, it is much more difficult
and time consuming. Server-side web frameworks allow direct work with HTTP
requests and responses. They also allow for very simple and easy routing of
requests to handlers and accessing data in the requests. There are many available
frameworks to choose from, and they all have their advantages and
disadvantages. The main points that could be taken into consideration when
choosing a server-side web framework are ease of use, performance (of both the
framework and the language used), caching support, scalability, and security. As
the Vinyl Record 2.0 is mainly to be a prototype, scalability and caching support
are not as important.

51

3.14.1.1 Ruby on Rails
The main idea behind Ruby on Rails is “convention over configuration”,

meaning getting a Rails project up and running is meant to be very easy. Rails is
the server-side web framework, and Ruby is the language.

3.14.1.2 ASP.NET
ASP.NET is a framework made by Microsoft for building web services. The

ASP.NET framework supports multiple languages, including Visual Basic and C#.
The framework is essentially a library of open source tools that can be imported to
be used for the project. One disadvantage of ASP.NET is that some of the products
that can host web servers do not support ASP.NET.

3.14.1.3 Node.js/Express.js
Node.js is a framework built off of the JavaScript language that allows for

quick and easy setup of web servers. Node is made up of many open source
libraries, called node modules, that can be imported into the web server. One of
those node modules, express.js is specifically for creating web servers and
handling/routing server requests. Because of the Vinyl Player 2.0 team’s
experience with Node, this is the framework that was chosen.

3.14.2 Server Database
PostgreSQL is a high speed database and was chosen for this project. The

main reason this database was chosen is because members of the group already
had experience in creating a database with PostgreSQL.

3.14.3 Server Hosting
Once the web server has been created, it will need to be hosted. This server

will be hosted on Heroku. Heroku is a cloud hosting company that allows for quick
and easy deployment of web servers through their CLI (command line interface).
Heroku handles all scaling and certification for sites that they host. Heroku works
very well with the framework (Node js) and the source control (github) chosen for
this project. Also, the free plan allows the server database to contain up to 10,000
rows of data, which is more than enough for the purposes of this project.

3.15 Mobile Development

We have chosen to use our mobile devices (phones/tablets) to control our

smart vinyl player. In order to use our mobile devices, we need to create a mobile

application that will interface with our smart vinyl player. There currently exists

three types of environments on the market today, Android, Apple, and Microsoft.

Each of these environments are supported by some of the biggest companies in

software & technology and offer unique features that make it contender. We are

52

going to be researching each of these mobile environments and choosing the

environment that best suits our project.

3.15.1 Android

Below is a table that outlines the main components and statistics of the
Android mobile operating system.

Feature Android

of active users More than 2 billion

Open - sourced? Yes

Operating System Linux

Manufacturers support HTC, Google, Samsung, LG, Sony, etc.

Programming Language Java

Development Hardware PC, Mac, Linux

Compatibility Issues w/ other Android devices Yes

Table 11 - Android Features

3.15.2 IOS

 Below is a table that outlines the main components and statistics of the IOS mobile

operating system.

Feature Apple

of active users More than 1 billion

Open - sourced? No

Operating System Unix

Manufacturers support Apple

Programming Language Swift

Development Hardware Mac

Compatibility Issues with other Apple
Devices

No

Table 12 - IOS Features

53

3.15.3 Windows Mobile

 Below is a table that outlines the main components and statistics of the Windows

Mobile operating system.

Features Microsoft

of active users ~ 70 million

Programming Language C++

Manufacturers Support Microsoft

Development Hardware PC, Mac, Linux

Open - Sourced No

Compatibility Issues with other Windows
devices

Yes

Table 13 - Windows Features

3.15.4 Mobile Operating System Final Comparison

IOS, Android, and Windows Mobile are excellent operating systems for
mobile application but from our initial impressions and research, we have decided
to go with Android. We have chosen Android for four main reasons; open-sourced,
number of active users, programming language, and development hardware.
 Developing with an open-sourced software provides lots of flexibility and
customizability you don’t get with closed-source. We have the freedom to modify
the native Android code to fit the needs of our project if we should need to. Open
source software also has more support than closed source software. For example,
Android is supported by Google and they’re responsible for major features and
upgrades but developers like us can develop add-ons and other modifications to
make Android more useful. Since IOS and Windows Mobile are closed source, we
have to rely only on Apple and Microsoft to provide major features and upgrades
and must develop within the constraints of the operating system.
 The large number of active users means that we can reach more mobile
users with our application. The more people we can reach, the better chance our
smart vinyl player system sells in the market. Since Android has over 2 billion
active users vs. Apple’s 1 billion active users vs. Microsoft measly 70 million active
users, we predict that we would be able to sell more smart vinyl player systems
with an Android application.
 Android supports the Java programming language vs. Apple’s support for
Swift programming language vs. Microsoft’s support for C++. The reason why we
prefer Android’s Java programming language because we are more situated and
comfortable with that language. We have been taught the Java language by our
professors and understand the syntax and inner workings of Java. We don’t have

54

to spend precious time to learn and understand a new language, we can just begin
developing our application as soon as possible. Microsoft C++ programming
language is similar to Java and would make it the second easiest language to learn
but requires some time to learn the syntax and other nuances of the language. If
we were to learn Apple’s Swift language, we would have to set aside a good
amount of time to learn the syntax of Swift and how it operates.

Android as well as Windows Mobile allows developers to use any kind of
machine (PC, Mac, Linux) to develop Android/Windows applications. Apple
requires a Mac computer in order to develop IOS applications which becomes a
hinderance. Since our team consists of only PC users, it would be difficult to
develop an application without a Mac Computer.

3.16 Version Control

One of the biggest and most important tools in the toolbelt of the software
developer is version control software. Version control software hosts a central
repository where the developer can store and edit developmental code. Version
control software also serves as a collaboration tool that makes it easier to develop
and share code with other teammates. Version control software can track all
changes and modifications that occur with the software as well as revert your code
base to a previous point in time if your updated code breaks. We are going to be
comparing four popular version control software and determine the best one for
our project.

3.16.1 Version Control Table Comparison

Below you will find a table that compares features of different version control
software from different companies. The features that are being compared are
important features that we are looking for as well as features that pertain to our
specifications outlined in the “house of quality.”

GitHub is one of the most popular version control softwares that exist on the
market. Professors, major companies, and students use this version control
software for their software projects. They come highly recommended for their ease
of use, excellent documentation, and safety procedures (prevent accidental
deletion or overwrite of code).

Microsoft is one of the biggest software companies in the world today. They
are responsible for building some of the most well known products (windows
operating system, xbox, and Cortana). These projects would most likely have failed
without the use of their version control software, Team Foundation Version Control
(TFVC).

HelixTeamHub made by Perforce is a lesser known brand but not inferior to
other version control software. This software more/less matches the caliber of
major version control software.

Amazon Web Services is one of the biggest cloud services that exists today.
One of their biggests services is CodeCommit. It’s not known to be the best version

55

control software but we will examine the basic features of CodeCommit in the table
below and how it matches to other version control software.

Features GitHub TFVC HelixTeamHu
b

CodeCommit

Costs Free Free Free Free

Company GitHub Microsoft Perforce Amazon

GUI Yes Yes Yes Yes

Code Review Yes Yes Yes Yes

Agile Issue
Tracking

Yes Yes Yes Yes

Third Party
Plugins

Yes Yes Yes Limited

IDE
Integration

Yes Yes Yes Yes

Cloud Storage 1GB Paid 1 GB 50 GB

of users unlimited Up to 5 Up to 5 Up to 5

Multi- Level
Permissions

Yes Yes Yes Yes

OS Support Windows,
Mac

Windows,
Mac

Windows,
Linux, Unix,
Mac

Windows,
Linux, Unix,
Mac

Transfer
Protocol

SSH & HTTP SSH & HTTP SSH & HTTP SSH & HTTP

Backups Yes Yes Yes Yes

Table 14 - Version Control Comparison

3.16.2 Version Control Final Table Comparison

The major source control softwares that are available on the market are
very similar to one another. They all have the major features one would expect
with a few minor differences. These differences include GUI design, configuration,
ease of use, etc. We have chosen GitHub as our version control software. All of
the other types of source control software are comparable to GitHub but we have

56

ultimately chose this software due to familiarity. We already have experience with
this software and have been previously installed on our computers. This reduces
setup and configuration times and allows us to begin developing as soon as
possible.

3.17 Android Studio

Before we can begin developing an Android application, we must download
the Android Studio Integrated Development Environment (IDE) and the Android
Software Development Kit (SDK). The Android Studio IDE comes pre-configured
out of the box with no extra configuration required. Since Android Studio is based
on the IntelliJ IDEA, an IDE that we have become familiar with, we can begin
development right away with no down time.

3.17.1 Intelligent Code Editor

Android Studio provides an intelligent code editor that is able to predict and
auto populate code as the user writes. It is able to reference different classes,
methods, fields, and keywords within your project and offer relevant suggestions
as you type. The user can focus more on the logic and methodology instead of
researching the Android library and syntax. In the long run, the user will have an
increased in productivity with minimal errors.

3.17.2 Emulator

Android Studio offers the Android Emulator, a tool that simulates your
mobile application on any android device (phone, tablet, wearables, and TV). It
provides almost all of the capabilities of the android device without having the need
to buy one. The emulator allows the user to conduct GUI tests to make sure the
mobile application responds and resizes correctly with each mobile device. The
emulator also allows the user to verify that the device hardware can interface with
the mobile application like storing data onto the phone or SD card. It goes one step
further and simulate real world events like receiving phone calls/text messages
and throttling network usage. Unfortunately the emulator will only allow us to test
the stability and performance of our mobile application, none of the peripherals like
the Bluetooth or Wi-Fi (supported on API level 25 system images).

3.17.3 Testing

Android offers multiple options to test your mobile application for any bugs,
performance issues, or anything that affects the user experience. Android Studio
allows the tester to setup JUnit tests to verify your mobile device performs as it
was designed. For example, if your program was given an input of 10 random
numbers and outputs the 10 numbers from least to greatest. The JUnit test would
input 10 test numbers and check if the program sorted it out correctly. Android
Studio also supports third party testing frameworks like Mockito (test API calls) and

57

Espresso/UI Automator (GUI tests) to test your android application for any bugs or
issues. The point of testing your Android application in the early stages of
development because it saves you time and money if you can find the bug/issues
early on. In the later stages, you discover a bug/issue, it becomes more costly to
refactor, test, and integrate the patch back into the software system.

There are two ways to test the GUI of the Android application. One, we can
manually test the GUI on the emulator or install our Android application onto an
Android compatible phone. We can test if the GUI is responsive and responds
correctly to the actions performed and redirects to the correct pages depending on
the user’s input. This technique is good when you are only testing your Android
application periodically and only a handful of GUI items. However, this can become
problematic depending on the size of our project. Based on the scope of our
project, we are planning to test multiple GUI items and frequently to make sure
nothing breaks within our application. The manual technique can be time
consuming and inefficient. Luckily, Android Studio provides a “Testing Support
Library” that provides a set of APIs (JUnit 4 and functional UI tests) and tools
(Espresso). We can create a suite of tests to analyze the functionality of our mobile
application and confirm our GUI operates as it was designed. We wouldn’t want
our mobile application to redirect to the wrong page or have a button perform the
wrong action. We also want to test the responsiveness as well as the robustness
of our GUI to ensure that the user experience is not degraded and any unexpected
errors or crashes resulting from the GUI. We can also save time and be efficient
by utilizing our suite of tests. Espresso allows us to automatically execute a suite
of common GUI tests every time we make any alteration to the mobile application.
This ensures that the GUI runs as expected all the time and when something
breaks, we are notified of the issue and we can quickly patch the problem. Best of
all, this saves us time from manually testing the GUI, giving us more time for
development.

The next stage in testing is to test the inner logic and external callouts of
our mobile application. We need to make sure our mobile application can provide
the correct output/results given a specific input by the user or the system. We also
want to make sure that our mobile application can interface with external sources
like our smart vinyl player and databases, be able to communicate and transfer
information. Some of the major components (computer vision, database requests,
and time calculations) are the foundation of our smart vinyl player. Each
component must operate correctly, separately, and seamlessly work together in
unison. A suite of JUnit tests will test the inner logic of our mobile application by
pulling information from our local & remote database and process the given
information and our tests will verify the output. We are going to write tests that will
test if the application can correctly identify and pull the information from the vinyl
label. Lastly, we are going to use “Mockito” to test if the information from the mobile
application can be transferred to our local database and to the vinyl player. This
all can be done manually but it can be repetitive and time wasting but these tools
will streamline the development process and make it easier to identify any
bugs/issues.

58

3.17.4 Layout Editor

Android Studio provides a native tool, Layout Editor, that allows the user to
create a graphical user interface by clicking and dragging widgets onto the canvas.
The user doesn’t have to waste time writing the XML code by hand, the Layout
Editor does it automatically. Once you are finished with your design in mind, you
can view your layout on other Android devices to see how it would look and if it
resizes properly. This makes it easier to prototype multiple designs and decide the
most fitting design for your mobile application.

3.17.5 GitHub Integration

Android Studio allows third party software to be integrated into their
software. One of the most useful and necessary plugins we require is GitHub, ourc
chosen version control software. It provides a seamless and automatic update
to/from the GitHub repository. Any changes made on the GitHub will update my
project to reflect the new changes and vice versa. This prevents loss of time due
to code conflicts or compatibility issues.

3.17.6 Developer Workflow

 As we begin to develop our mobile application, we require some general
knowledge on how to approach a software development project. Android has
developed the “Developer Workflow Basics” to guide us to build a robust and
efficient mobile application. Android has outline the main processes; Setup, Write,
Build & Run, Iterate, and Publish.
 The first stage “Setup,” we must setup our workstation (computer) before
we start developing the Android application. We need to install the Android Studio
integrated development environment (IDE) and all of it’s dependencies (software
development kit, plugins, etc.). Once we have configured our IDE, we can create
a new software project which we will name “SmartVinylPlayer.”
 The second stage “Write,” we can begin developing our code. Using the
tools mentioned before, intelligent code editor and layout editor, we can create the
graphical user interface (GUI) and the code to support the GUI. When we first
create the Android application, the Android Studio IDE sets up the basic foundation
of every Android application. We don’t have to waste time setting up the project
settings, we can begin programming our project right away. With the intelligent
editor and layout editor, we can develop our application much faster, giving us
more time to test and debug in the end.
 The third stage “Build & Run,” is to build (compile) our software. Once we
build the software without any errors or issues, we can begin loading the mobile
application onto an emulator or mobile device. Although it would be more preferred
to load your mobile application onto an emulator to save time. Once we have
successfully loaded the application onto the emulator, it is time to test it.
 The fourth stage “Debug, Profile, and Test,” our mobile application. We are
going to test the accuracy and efficiency of our mobile application to verify that it
fits our requirements. We also will be testing the application for any bugs/issues.

59

We want our application to run smoothly without any faults or errors. As we begin
testing, any bugs/issues that we encounter will be dealt with immediately.
Regression testing is extremely important because as we continue to find and fix
bugs, we need to make sure that our fixes aren’t affecting or breaking other parts
of the code. We would refer to regression testing techniques, creating a suite of
JUnit and UI tests to check our software after each modification. This also saves
us time from having to manually execute these tests as well, giving us more time
to develop.
 The last stage “Publish,” would mark the end of our software development.
Once our application has passed our tests, we can have our application available
on the Android app store for people who purchased our product.

3.17.7 Camera Integration

 One of the major features of the smart vinyl player would be to take
a picture of the vinyl player label and the mobile application would be able to
identify the album name, date, etc. Our mobile application needs to be able to
interface with a camera and relay the picture taken from the camera to our
computer vision/ machine learning program. Android framework provides API
support for a variety of cameras and camera features for mobile devices
(Samsung, LG, Google, etc.). Some things to consider as we develop our
application, we are going to declare that the mobile device has a camera inside
the “manifest declarations.” We believe the camera will be a good addition to our
mobile application and enhance the user experience. We also have the option to
use existing camera apps or create our own specialized version. For the purpose
of our project, we will most likely be using existing camera apps to save time and
effort. We don’t need any special features with our camera app, we only need a
clear well-defined picture. Any pictures taken within our app will be accessible to
other applications on the user’s phone (gallery, facebook, third-party applications).
The pictures need to be accessible by our machine learning/ computer vision
program which will receive and process the given images and relay the information
back to our android application.

 The class, Intent, will allow us to call upon an existing camera
application to take quick pictures. The existing camera application has been
developed and tested by other developers, we can be sure we won’t have any
compatibility issues implementing it in our program. This will save us time and
effort from developing our own camera application. The process to take a photo is
request camera feature > take photo with app > get thumbnail > save photo > add
to gallery > (optional) decode scaled images.

 The first thing we want to do is set a requirement that all mobile
devices that download our app should have a camera. We will add this line (uses-
feature android:name="android.hardware.camera" android:required="true") to our
application manifest. We believe the camera is essential to the user experience.
However, we might decide to make the camera optional and the user would be
able to operate the application without using the camera by setting the
“android:required = false.” We could make the vinyl scanning option available to

60

users with a camera with this statement,
“hasSystemFeature(PackageManager.FEATURE_CAMERA).”

The next thing would be to create an “Intent” object to call an external
activity (camera application). The external activity will execute and process the
image resulting from the external activity.

The next thing would be to retrieve the photo from the camera. The Android
camera would encodes the photo in a format as small as BITMAP. Once the image
has been encoded in a specific format, the ImageView object will display the image
in the specified format.

The last thing would be to store the encoded image. We have two options,
we can store the image in a location that is accessible by other applications or
have the image only accessible to the pertaining application. To save the image in
a public location where third party applications like the gallery, Facebook, etc., you
would call the “getExternalStoragePublicDirectory(DIRECTORY_PICTURES).” If
you would like the image available only to the specific application, you would call “
getExternalFilesDir()” method. The last thing would be to invoke a method to
provide a name for that file. The method should have a way to give the file a unique
name. To make the image discoverable by the Android gallery and third - party
applications, you would invoke the system’s media scanner to add the new image
to your Media Provider’s database.

3.17.8 Mathematical calculations

 We are going to be using the powerful hardware on our mobile device
to do all of the necessary calculations. We don’t have to buy expensive processors
or equipment to supplement our processing needs or worry about memory/power
constraints. We can just rely on existing resources (mobile device) to process any
and all calculations.

 One of our main features, being able to drop the needle in the correct
spot, requires us to do some calculations in order to achieve this. We need to take
into account a few variables, size of the vinyl record, the number of grooves on the
record, how many songs are on the vinyl record, and how long are each song. This
information will allow us to determine how far we need to bring the needle from a
predefined place.

For example, if we analyze a 12 inch vinyl record (4 inches belong to the
label), that leaves us 8 inches of grooves where the music is stored. If we were to
assume each record have about four songs and assume the four songs take up all
8 inches of vinyl space, we can calculate how far from the edge we need to go if
we were to pick a specific song. If each song was 2 minutes long each, that means
each song would take about 2 inches (radial distance) of the vinyl record. If we
want to pick the third song, we would move the needle 4 inches (radial distance)
to start the third track.

We need to take into account that not all songs will be uniform or that each
vinyl record may have more or less than 4 songs. Our solution would be to scan
the vinyl label to determine the number of songs on the vinyl record as well as find
the duration of each song. Once we know the information we can calculate the

61

radial distance for each track and relay that information to the microcontroller on
or smart vinyl player to execute.

3.17.9 Android Operating Systems

 The Android mobile operating system has many generations since
its official inception in 2008. Today, the mobile operating system is developed and
maintained by Google. With each iteration of Android, Google continues to provide
more interactive features and updates. The cause for software improvement
comes partly from the advanced hardware capabilities of the mobile market. Other
reasons could include security patches, virtual reality, support for other mobile
devices, etc. We have chosen to work with Android Nougat because we believe
the latest and greatest Android operating system provides all the necessary
functionality we require as well as the latest software updates to ensure speed and
efficiency.

3.17.10 Android Nougat

 Some of the notable upgrades of Android Nougat is increased
performance, battery & data conservation, and privacy & Security. These features
are the foundation of any mobile operating system and must be continuously
upgraded. Some of our goals outlined in the “House of Quality” benefit from these
improvements.

 Android Nougat introduced a new JIT compiler. This means as the
developer (us) writes the code, the compiler will work in the background to optimize
our written code. This will increase runtime performance, faster, and reduce the
size of our software. Memory management is important for performance, to reduce
application crashes and faults, and power consumption.

 Android also provides a battery saving feature “Doze,” which keeps
your device in low power usage as you move around your home. We want to limit
the amount of power consumed from a lit screen or while using the Bluetooth
capability. We only want to power the basic necessities. Android also provides a
“Data Saver” capability that limits the apps in the background from accessing cell
data. For example, our mobile application will be using cell data to make requests
to external database to pull information about vinyl albums. We don’t want the
mobile application to continue making requests to database in the background or
constantly retrieve information if it’s not required.

 Privacy and security is always a top priority when developing any
software. Android provides some key features that keeps the identity of the user
hidden as well as his content. Some new features include seamless software
updates, file-based encryption, and scoped folder access. Any mobile application
would benefit from constant software patches and upgrades to reduce any security
risks. Any security risk that goes unpatched and unnoticed can be problematic in
the future. For example, if a hacker was to exploit a security risk that would have
been prevented if the user had updated, they would have access to the user’s
phone and personal vinyl record collection. Android also introduced file-based

62

encryption to encrypt each and individual file for better isolation and protection.
This means that each file created by our application (vinyl records and user
records) would be encrypted and if someone wanted to gain your entire vinyl
record collection, they would have to decrypt each and every file. Scoped folder
access allows the user/developer to provide access to specific folders instead of
all the memory. This means we can limit access to our vinyl records and user
records to be used by our application only. No other application would have access
to our records, keeping your information private.

3.17.11 Programming Flexibility : C/C++ Code
 Android studio includes an option to include C and C++ code in your Android
project. This can be particularly useful because other developers might be more
well rehearsed in these languages instead of Java or Kotlin. This will allow us take
advantage of the benefits of C/C++ code and combine them with the Java code to
make our code much better. We only need to add the C/C++ code into the cpp
directory of the project, and when we build the project, the code will be compiled
into a library that the Gradle can pack with the Android Application Package (APK).
The Java/Kotlin code can just call those C/C++ functions using the Java Native
Interface (JNI). When creating native libraries (C/C++ code), it is recommended
we use CMake, a cross-platform and open-software to handling the build process.

3.17.11.2 Enable C/C++ into Android Program
 To add C/C++ code, also known as native code, we can add/create native
code and import it into the Android Studio project. Second, we need to configure
CMake to build the native code into a library that the JNI can use. The last thing
would be to configure the Gradle (add path to CMake or ndk-build script file) to
import the source code and package the native library into the APK. The tools we
need are the Android Native Development kit (NDK), CMake (version 3.7+), and
Android Studio debugger for native code (LLDB).

3.17.12 Java Native Interface : JavaVM & JNIEnv
 A java program that defines the procedure for interacting with native code.
It has the ability to load code from dynamic shared libraries in the most efficient
way. JNI use two data structures “JavaVM” and “JNIEnv” which are basically
pointers to function tables. JavaVM provides an interface to invocate functions,
allowing the developer to create and destroy a JavaVM. JNIEnv provides most of
the JNI functions and it is the first argument in the native functions. JNIEnv is used
as thread-local storage which prevents threads from sharing the JNIEnv. One way
to get the JNIEnv, the user would get the JavaVM and use the “GetEnv” method
to find the thread’s JNIEnv. Please note that C and C++ have different JNIEnv and
JavaVM declarations which means the “jni.h” includes different typedefs for C and
C++. Convention says to avoid including JNIEnv arguments in header files to avoid
unnecessary configuration or development work.

63

3.17.12.2 JNI: jclass, jmethodID, jfieldID
To access an object field from native code, you would call “FindClass” to

get the class object reference, “GetFieldID” to find the field ID for a field, and get
the contents by calling the “GetFooField.” Calling a method follows the same
procedure, get the class object reference then the method ID (pointers to runtime
data structures). All the references and IDs are valid for as long as the class is
loaded, as long as all the classes associated with a ClassLoader are being used.
To increase performance it is wise to cache some fields and IDs by using a
“nativeClassInit” method in the native code. We will invoke the method once when
the class gets initialized and keep invoking the method every time a new class
instance is created.

3.17.12.3 JNI: Local & Global References

 Arguments that are passed to a native method and objects returned by the
JNI function are known as a “local reference.” Local references exist only during
the execution of a native method in the current thread. After the execution of said
method, the object may continue to exist but will no longer be accessible. This rule
applies to all sub-classes of “jobject”, “jclass”, “jstring”, and “jarray.” To preserve
references outside the native function/method call, you call the functions
“NewGlobalRef” and “NewWeakGlobalRef.” The functions will take the local
reference and transform the reference into a global reference and will be valid until
you call the “DeleteGlobalRef” function. One thing to note, references to the same
object may contain different values and to check if they are the same, you would
use the “IsSameObject” function (never ==). We shouldn’t assume object
references are constant or unique and because of this we should avoid using
“jobject” values as keys. Developers should be mindful when creating many local
references to preserve precious resources (up to 16 local references). If we require
more than 16 local references, we should reserve more by calling
“EnsureLocalCapcity” or “PushLocalFram” or to delete local references as soon as
we’re done with them. You can free local references by making a function call to
“DeleteLocalRef.” If we don’t call the function, JNI will automatically delete local
references but we have no control on when it will be deleted. On a special note, if
you use “AttachCurrentThread” method to attach a native thread, JNI will not delete
local references until the thread has been detached. The job of deleting local
references belong to the developer instead of the JNI. Since jfieldIDS and
jmethodIDS are opaque types (not object references), they cannot be passed to
the “NewGlobalRef”.“GetStringUTFChars” and “GetByteArrayElements” return
raw data pointers, not objects references, meaning they can’t be passed to
“NewGlobalRef” as well.

3.17.12.4 JNI: Exceptions
 It is advised that you don’t call JNI functions while handling an exception.
There are some JNI functions that are acceptable which include but not limited to
DeleteGlobalRef, DeleteLocalRef, ExceptionCheck, ExceptionClear,

64

PushLocalFram, ReleaseStringChars, etc. You should check for exceptions when
making JNI calls to ensure the return value is valid, unless the the return value is
obvious. Please not Android doesn’t support C++ exceptions. JNI handles
exceptions by using “Throw” and “ThrowNew” instructions to set an exception
pointer in the current thread. Once the program returns from the native method
call, it will handle the exception accordingly. However, the developer can directly
falg the exceptions by enacting the “ExceptionCheck” and “ExceptionOccured”
calls and once the program has dealt with the exception, the developer would call
the “ExceptionClear” to clear the exception. If you need to log the exception
message, you need to find the “Throwable” class and look up and call the
“getMessage ‘()Some/Foo/Exception;’” and print the return value from the function.

3.17.12.5 JNI: Extended Checking

 Android offers a mode called CheckJNI which converts the JavaVM and
JNIEnv function table pointers to tables of functions that perform a series of tests
before calling the standard implementation. The purpose of CheckJNI is to search
for errors in native code to prevent software crashes.ChckJNIchecks for bad
pointers, critical calls, exceptions, references, type safety, arrays, class names,
jfieldIDs, jmethodIDs, etc. CheckJNI is enabled by default when using an emulator
but if you are using a rooted device, the user would need to input a sequence of
commands to enable it. An alternative way would be to set “android:debuggable”
attribute in the application’s manifest.

3.17.12.6 JNI: Unsupported Features/Compatibility
 All JNI 1.6 features are supported except “DefineClass.” Android cannot
process bytecodes or class files, so using binary class data is ineffective. Dynamic
lookup of native functions for Android version 2.0 and below requires using explicit
registration or moving native methods out of inner classes. Detaching threads
using the “pthread_key_create” function and suppressing the “thread must be
detached before exit” check isn’t possible for Android 2.0 and below. Versions
older than Android 2.2 rejected the use of weak global references and versions
older than Android 4.0 required weak global references to be passed to
“NewLocalRef”, “NewGlobalRef”, and “DeleteWeakGlobalReg” functions. Later
iterations allowed weak global references to be used as an JNI reference. Versions
older than Android 4.0 used local references as direct pointers. Newer versions
added indirection to support better garbage collectors but hid a lot of JNI bugs that
are prevalent on older releases. Local references as direct pointers also made it
impossible to implement “GetObjectRefType” correctly. To determine the
reference type, the function would look through the weak globals table, the
arguments, the locals table, and the global table sequentially. If the direct pointer
was found, the function would return the reference type at that particular moment
in time and not necessarily its true reference type.

65

3.17.13 LINT Tool
 The LINT tool, introduced in ADT 16 and Tools 16, analyzes the Android
project for any bugs. The tool also identifies any problems that affect the structural
quality of the code and assigns a severity level and message. The developer can
prioritize the issues within the code and fix the problems that have a severe impact.
The program can provide optimization suggestions for correctness, security,
performance, usability, accessibility, and internalization. The application source
files consist of the Android project which includes Java and XML files, icons, and
ProGuard configuration files. The lint.xml configuration file is used to specify
specific lint checks that we want to include and exclude and the severity of each
problem. The lint tool is static code that is tasked with analyzing for structural code
problems.

Figure 7 - Lint Tool Process

The tool can be accessed numerous ways, command line, standalone tool,
Android Studio plugin (ideal way to use the tool), eclipse, etc. The tool can be
executed at will through the command prompt or every time we build the Android
application in Android studio.

3.17.14 Vector Asset Studio
 The tool helps add material icons and import Scalable Vector Graphic
(SVG) and Adobe Photoshop Document (PSD) as vector drawable resources. The
benefit of using vector drawables instead of bitmap images because it reduces the
size of the APK. This happens because the images can be resized for different
screen densities without loss of image quality. Android 4.4 and lower doesn’t
support vector drawables, however, Vector Asset Studio can convert vector
drawables into different bitmap sizes for each screen density at build time. For
backward-compatibility, Vector Asset Studio can generate raster images of the

66

vector drawable. Depending on the API level, your application will interpret
Drawable (java code)/@drawable (xml) objects as vector or raster image. You
have the option to only support vector drawables but it requires Android Support
Library 23.2 or higher. The developer must modify the “build.gradle” in order to use
the “VectorDrawableCompact” class in the support library. Using the method will
support VectorDrawable in Android 2.1 and above.

3.17.15 Network Profiler
 The Network Profiler displays your application’s network activity showing
data that has been sent and received as well as the number of connections. This
can give insight on how your app transfers data and how you can optimize your
code to reduce the bandwidth. The Network Profiler can also be used to look for
frequent spikes in network activity which means the phone is either turning on/off
the mobile/WiFI radios frequently or remaining on to handle many short requests.
The developer should take note and optimize the application by batching network
requests. Ultimately, this will reduce the number of times the mobile/WiFI radios
turn on and preserving precious energy resources. The mobile/WiFi radios can
also take advantage of low-power mode in the longer gaps between batched
network requests. The Network Profiler currently only supports
“HttpURLConnection” and “OkHttp” libraries for network connections.

3.17.16 Profiler GPU Rendering
 A visual tool that highlights user interface issues like unnecessary rendering
work or executing long thread and GPU operations and displays it as a scrolling
histogram. It displays the time it takes to render the frames of a UI window relative
to 16ms per frame. The tool can analyze the GPU and determine when the GPU
is overwhelmed and lagging behind to draw the pixels of each frame. The
developer can choose to optimize the code to run intense graphics or lower the
video/graphic quality to ease the load. Please note, this tool doesn’t work with any
apps that utilize the native development kit (NDK).
 You can visually analyze your Android application for signs of overdraw
(when the application draws the same pixel more than once within the same
frame).

67

Figure 8 - GPU Overdraw

If the UI elements have not been overdrawn, they show the original color. If the UI
elements have been overdrawn once, they are highlighted in blue. They are
highlighted in green if they’re overdrawn twice. Pink, if they have been overdrawn
3 times and red if they have been overdrawn 4 or more times. The Overdraw tool
is particularly useful because you can identify and correct any GPU issues to
preserve energy and GPU resources.

3.17.17 Memory Profiler
 The Memory Profiler identifies memory leaks and memory churn (using
large amount of processing resources for garbage collection) that can lead to
stutters, freezes, and app crashes. Some of the tool features include a realtime
graph of the application’s memory use, capturing the heap dump, force garbage
collections, and track memory allocation. The developer will use this tool to analyze
memory allocation patterns and correct any issues. Identify memory leaks by
dumping the Java heap over a period of time and analyzing which objects take up
memory. Recording memory allocations during regular and intense utilization of
the app can show where the program is allocating too many objects or if some of
the objects are getting leaked.

3.17.18 CPU Profiler
 We can analyze the application’s CPU usage and thread activity and record
method traces with the CPU Profiler. We want to optimize and minimize CPU
usage to provide a fast and smooth user experience as well as preserve energy
resources. Being efficient also allows your application to be compatible with newer
and older devices as well. We can identify what methods are being executed over
a period of time and how much of the CPU resources are used for each method.

68

We can use method traces to identify callers (method that invokes another method)
and callees (method that is invoked by another method) to trace and find out what
methods call resource-heavy tasks and use the information to optimize the code.

3.17.19 Battery Stats and Battery Historian
 The Battery Stats tool collects battery data on the Android enabled device
and saves the information onto your local machine using Android Debug Bridge
(ADB). Battery Historian will take the information saved on your local machine and
create a visualized report that can be displayed in your browser. The report will
show where and how process are drawing energy from the battery and identify
tasks in the Android application that could be deleted or put to sleep. Please note,
to use this tool, it requires the device to be using Android 5.0 and higher with USB
Debugging enabled.

3.17.20 Android Device : Samsung Galaxy 8 (Android 7.0)
 For demonstration purposes of the mobile application in a real-world
environment, we are going to be selecting the Samsung Galaxy 8 smartphone.
The smartphone contains the latest updates which equates to more functional
features and better graphical user interface. The smartphone also packs 8 cores,
operating at 2.45 GHz, of processing power that makes it easy to handle
mathematical problems. It also provides 4GB of RAM and 64GB of storage that
gives us plenty of memory for the Android application to operate. Having relaxed
constraints, in the beginning, as we develop allows us to focus on attaining a
solution. Once we achieve a solution, we can begin to optimize our solution in order
for us to achieve some of the qualities outline in the “house of quality.”

3.17.21 Android Device : Samsung Galaxy Tab (Android 4.2)
 For demonstration purposes of the mobile application in a real-world
environment, we are going to be using the Samsung Galaxy Tablet. The tablet will
be used to demonstrate our applications capabilities and compatibility with older
Android enabled devices. If we want to reach a broad audience, we need to make
our application available to as many phones as possible. The tablet also offers a
bigger screen size which makes it easier to display and operate our application.
The fact that the tablet is an older mobile device using older software, some of the
power saving and efficient features would be disabled. But the overall functionality
of our application should continue to work as expected.

3.18 Computer Vision Development

As noted in section 3.9, Python programming language is the most natural
language to implement the computer vision and deep learning components of the
Vinyl Player 2.0 software system, largely due to its simplicity to implement and lack
of support for other languages. Initiated in 1991 by Guido van Rossum, Python is

69

a powerful interpreted language that supports multiple programming paradigms
and has an emphasis on readability.

3.18.1 Python Core Features

There are a variety of reasons that attribute to the popularity of Python and
thus it being a first choice language for the tools that this projects utilizes other
than the simplicity of usage and this section will focus on some aspects of the
language that sets it apart from other object-oriented approaches and how it may
give advantage when applied to the task that the Vinyl Player 2.0 tackles.

3.18.1.1 Interpreted Language

Unlike other programming languages that are supported, to varying extents,
by the computer vision and machine learning libraries needed for this task, Python
is an interpreted language as opposed to a compiled language. A programming
language being interpreted means that a program produced using the language
will not be translated into machine level instructions, rather it will be executed
directly on a separate program called an interpreter, written in the native language
on the platform it's on. An advantage of using a programming language with an
interpreted implementation is that the code tends to be more portable, which is a
useful aspect when attempting to deploy on multiple platforms. Another benefit of
Python being an interpreted language is that it supports dynamic typing, a core
feature of Python that is discussed in section 2.x.x. One downside of this aspect
of Python is that compiled languages are typically faster than interpreted ones
because it produces the native machine code and allows for optimizations in the
native language.

3.18.1.2 High-Level
While some of Python's popular contemporaries such as Java, C#, C++,

etc. ease the task of producing instructions that are executed on a machine,
Python takes this to another degree with its high-level nature. Python provides
complex data structures and has human readable language in mind with its easily
understandable syntax, which both allow for faster prototyping and
experimentation in the implementation of the Vinyl Player 2.0 software system.

3.18.1.3 Dynamic Typing

Dynamic type checking is the operation of verifying the type of a variable at
runtime as opposed to compile time, which is what static type checking does.
Python being an interpreted language does not have a compiler, and thus no
compile time, which allows it to have this characteristic. This is yet another aspect
that gives Python the advantage for developing and prototyping at a quicker rate
than statically typed programming languages because where a compiler would not
allow an object to have a dynamic type Python does need to worry about it. This
also gives an additional dimension of freedom when implementing the system, yet

70

somewhat reduces the reliability of the system compared to statically typed
languages.

3.18.2 Development Environment

It is important to have the right tools to create a product with and that is what
is achieved through usage of libraries such as OpenCV & TensorFlow, but a
component to development of a software system that also holds great weight is
the environment that is used to bring these tools and the code together. Below is
the environment that will be utilized to create the computer vision portion of the
Vinyl Player 2.0 and a description of just a handful of the useful characteristics
contained.

3.18.2.1 Anaconda
Anaconda is an open source Python distribution and package manager that

is geared towards data science and is popular for applications such as the optical
character recognition task that the Vinyl Player 2.0 computer vision software deals
with. An aspect of Anaconda that aids its wide adoption in the data science
development community is that the distribution is very comprehensive when it
comes to the basic tools needed for large-scale data applications. This means that
quintessential Python libraries such as numpy, pandas as well as many others
already come pre-loaded in the distribution, which is convenient for the
development team.

 In addition to the libraries used for Python development, Anaconda also
comes packaged with resources such as an IDE for programming and web
application for prototyping. The Spyder IDE, formerly known as Spydee, is a
lightweight and has an exemplary variable explorer that could be useful for
debugging purposes. The web application that allows not only for fast prototyping
of the Vinyl Player 2.0 software system , but also gives the opportunity for teams
to have live shareable documents is Jupyter Notebook. This is a great asset to
have package in Anaconda has it provides for powerful and fast visualizations that
will yield room for fast experimentation when creating the system.

3.18.3 Python Integration

Python provides some unique advantages of other programming languages
and is the most popular choice for developing with libraries like OpenCV and
TensorFlow, although there is an additional step that is produced through the
choice of developing with this programming language. Python does not have the
ability to directly run on Android, just as any programming language that is not
Java or Kotlin doesn't and thus there is a need to link the functionality that is given
by the Python script with the Android application that will host it. The best approach
to remedy this is to package the Python scripts and bundle it with the Android
Application Package (APK), the file format used for mobile Android apps. As this
isn't a process related to the core functionality of the Vinyl Player 2.0 it is best to
outsource this duty to a preexisting technology.

71

There isn't a wide range of choice to perform the specific duty of running
Python script on an Android platform, so the most viable option is Kivy's Python-
for-Android library. Kivy itself is a library for creating multi-platform applications,
but since it is not desired to write the totality of the mobile application in Python it
is best to solely utilize the sublibrary to give the Android app access to the
computer vision and deep learning functionality. An additional issue with trying to
run Python scripts in Android is that the mobile platform does not come out-of-box
with a Python interpreter so one must be included with the build of the application,
which will increase the memory size of the application.

72

4 Design Constraints and Standards
The following section outlines the constraints that were present and had to

be taken into consideration while developing the Vinyl Player 2.0. Additionally, this
section details the standards that were met in the design of this project.

4.1 Constraints

There were various design constraints in creating this project, all of which
are outlined in this section.

4.1.1 Mechanical
As with many full fledged products there is a number of areas of knowledge

that are required for the complete system that may not be a strong suit of the
members on the team. This is the case with mechanical work for the Vinyl Player
2.0 and as the team for this project consists of computer and electrical engineers.

The result of this is an attempt to limit the amount of work that happens in
this area of engineering as some of the enhancements from mechanical work
would be both time consuming due to the time it takes to gain the expertise in the
field and not directly correlated to the main use case of the goal of the Vinyl Player
2.0, which is to increase the accessibility of vinyl player usage.

One feature that was contemplated but ultimately not pursued due to it
almost purely consisting of mechanical work was a system that could carry and
switch out records on the platter to give have more of a library of albums that could
be accessed via the Vinyl Player 2.0 as opposed to just one. This is one instance
where it idea was interesting but the overwhelming complexity on the mechanical
side to have a system that can identify, lift and switch records was one of the main
reasons for it to be dismissed.

4.1.2 Time
Of course, the amount of time allotted to finish the project is a limiting factor

in the process of building the Vinyl Player 2.0, yet this is a factor for most any
project that happens in industry or personal development. There are a number of
stepping stones to reach that will aid in seeing how the project is moving with the
time that the team has to research, design, build and test the Vinyl Player 2.0.
Some of these goals that help in assuring the project is progressing smoothly are
testing the motors that are used to move the tonearm of the record player, training
the computer vision system against a dataset of vinyl record images to obtain a
system that can accurately identify album and artist, creating wireframes of the
mobile app, etc.

73

4.1.3 Financial
Another common constraint is the budget that is given to build the project.

Although the very generous sponsorship of SoarTech gives the team the added
benefit of not needing to source the money needed for the projects themselves,
which would almost assuredly be much less, there is still times where a certain
functionality must find a different implementation or be scrapped entirely simply
because the budget does not support the expense. While this is a constraint, it can
also aid the project as the incentivizes the team to come up with more creative
solutions to issues or functionalities that are too pricey to implement.

An example of a financial restraint can actually be found by looking back at
the selector system that was discussed in the mechanical constraint section
(Section 4.1.1). There are systems that perform this exact functionality described
in the mentioned section found in certain models of jukeboxes, which would have
nearly eliminated the mechanical workload that comes with building a complex
system of that nature. The financial constraint again dashed the possibility of this
supplemental component is that buying this selector costs over $1000 on the low
end, which would far exceed budget and not allow for monetary allocation for any
of the other more essential components of the project. This was another reason
for not proceeding with this idea.

4.1.4 Environmental
 While portable turntables exist, the model that was chosen to build off of for
the Vinyl Player 2.0 is not one of them and thus is limited to the same
environmental conditions a regular record player that would rest on a shelf. Some
conditions that may not be optimal for the system to function is rain, snow, humid
weather and excessive heat.

4.2 Standards

There are many standards that are regulated and enforced in power
supplies and electronics. Likewise, there are standards that are used in application
development that vary from language to language. Standards help protect
consumers from unsafe products, ensure portability and reusability of code, protect
manufacturers from lawsuits, and allow for many products to coexist without
interfering with each other. The following section outlines the many standards that
were adhered to in the creation of the Vinyl Record 2.0.

4.2.1 Power Supply Standards
Though the Vinyl Record 2.0 does not require large amounts of power in

order to operate, its power supply will need to step down relatively high voltages
from wall outlets to provide appropriate power to the rest of the connected devices.
When working with large voltages, it is particularly important to strictly adhere to
industry standards to ensure safety in operation for users. Both fire and electric
shock can be caused from poor implementation in power supplies.

74

The main agencies that create electrical safety standards are the
International Electrotechnical Commission (IEC) and the International
Organization for Standardization (ISO), though there are many more agencies that
provide standards and certification that are specific to specific countries or
continents. Whenever identifying if a product meets safety standards, it will likely
have a code for the standard met, as well as a code to indicate the country in which
the product received its certification. There are many different power supply
standards, but only some specifically pertain to the Vinyl Player 2.0.

4.2.1.1 IEC60950-1
This standard applies to battery-powered information technology equipment

and to machines with a rated voltage that is less than 600 V. Its purpose is to
prevent injury and damage to property from electric shock and fires. The standard
defines three classes of equipment that relate to how their power supplies isolate
the rest of the device from dangerous AC voltages.

● Class 1 – This equipment uses basic insulation and protective earth

grounding to protect against electric shock. All conductive parts that could
potentially have a hazardous voltage must be connected to a protective
earth conductor in case that the basic insulation fails.

● Class 2 – This equipment provides protection using double or reinforced
insulation. Because of this, no ground is required.

● Class 3 – This equipment operates from a Safety Extra Low Voltage supply
circuit. This means that the circuit inherently protects against electric shock
since it is impossible for hazardous voltages to be generated within the
equipment.

In understanding the above classifications, it was necessary to understand

some important definitions: Hazardous Voltage is defined as any voltage that
exceeds 42.2 V AC peak or 60 V DC without a limited current circuit. Extra-Low
Voltage is a voltage that is in a secondary circuit that is less than 42.2 V AC peak
or 60 V DC, with the circuit being separated through basic insulation (at least) from
any hazardous voltages. A Safety Extra-Low Voltage Circuit is a secondary
circuit that cannot reach a hazardous voltage through any two accessible ports
and must be separated from hazardous voltages by at least two levels of protection
(double insulation or basic insulation with an earthed conductive barrier). Limited
Current Circuits are circuits that are designed to ensure that hazardous currents
cannot be drawn even in a fault condition, while also maintaining all of the
segregation rules of Safety Extra-Low Voltage Circuits. Protective Earth
Conductors connect exposed parts of the circuit and helps protect from electric
shock by bringing these exposed parts of the circuit to lower potential. This
standard also defines types of insulations that should be used to separate
components from hazardous voltages.

● Operation/Functional Insulation is the minimum insulation for

equipment to function, but does not protect against electric shock.

75

● Basic Insulation is insulation that is connected to live parts and adds
basic protection against electric shock.

● Supplementary Insulation is insulation added in addition to basic
insulation to give extra protection against electric shock in the case
that the basic insulation fails.

● Double insulation uses both basic and supplementary insulation.
● Reinforced Insulation is a single piece of insulation that gives

protection against electric shock that is equal to double insulation.
The standard dictates that the minimum insulation requirements are defined as
follows. Primary to secondary defines reinforced insulation with as having
dielectric strength of at least 3000 Vrms. Primary to ground defines basic
insulation as having a dielectric strength of at least 1500 Vrms.

4.2.1.2 UL 60065
UL 60065 is the standard for audio, video and similar electronic

apparatuses, so it specifically pertains to the Vinyl Player 2.0. This standard is
mainly for applications that are intended for household use and that generate,
record, or reproduce audio or video. The main requirements to meet this standard
is that the apparatus should not present any danger when used as is intended,
both when operating with and without fault. More specifically, there should be
protection against hazardous currents flowing through the user’s body (also known
as electric shock), excessively high temperatures, harmful radiation, the possibility
of implosion or explosion, mechanical instability, and the equipment starting a fire.

4.2.2 Soldering Standards
Soldering is the process of joining two leads of a circuit by melting a metal

onto the circuit. In this project, there are many times that soldering will be
necessary, including to connect the microcontroller pins to the PCB, connecting
the motors to the drivers, and connecting the drivers to the PCB. It is important to
be very careful when soldering, as the soldering iron (used to melt the filler metal)
runs at very high temperatures and because any mistakes in soldering could cause
shorts in the circuit.

4.2.3 C Programming Standards
The C Programming language will be used for the programming of the

microcontroller, which will control all of the motors in the Vinyl Player 2.0. There
are many standards in the C language. These standards help promote readability,
portability and functionality of the code.

4.2.3.1 Naming Conventions
The naming of functions and variables is an extremely important part of any

programing. The following table shows different data types and proper naming
conventions. When naming function, the function name should clearly indicate

76

what action that function performs. For example, if a function is created to connect
to a user’s device via Bluetooth, an appropriate name for the function would be
connect_via_Bluetooth. Function names should be all lowercase with underscores
separating words. For most generic variables, camel casing should be used.
Camel casing is where the the first word of the variable name starts lowercase,
and each subsequent word starts with an uppercase character. If the variable is
referencing a unit, it should include that unit in its name.

When naming a pointer variable, a “*” should be appended to the front of
the variable name. When naming a global variable, the name should be prepended
with “g_”, designating that it is a global variable. Global constants should be in all
uppercase letters with an underscore separating each character.

4.2.3.2 Formatting
There are many formatting categories, including brace placement,

comments, separation of keywords, character limits per line, and specific function
formatting. While there are some differing views on how brackets should be placed,
for the Vinyl Player 2.0, brackets will be used to enclose all if, while, and do
statements regardless of how many lines are in the statement. Any keywords that
are used should have a space between them and the next part of the statement.
This helps keep the keyword separated to prevent it from being confused with
another variable. A single line of code should not exceed 78 characters, as it would
make the line difficult to read, especially on smaller monitors.

In if/else statements, for this project, a new line will be made after the closing
brace of a line for the next part of the statement. Also, in an if condition, if a variable
is compared to a constant, the constant should always be on the left side of the
comparator. A single line of code should only contain one statement. This helps
make the code clearer and easier to read.

4.2.3.3 Comments
Comments in code can be helpful in understanding what the code is doing.

Nevertheless, the code itself should be very clear and easy to understand without
comments, so comments should only be used when necessary – on parts of code
that are a bit more difficult to understand. Comments can be helpful in giving an
overview of a section of code and of the whole application, in giving an explanation
of a specific function, or explaining specific parts of code that may be confusing. It
is also important to document decisions with comments. If there is a specific
section of code where other solutions seem possible, it can be important to explain
why that specific solution was chosen.

4.3.1 Android Application Guidelines

 Application development guidelines and standards, developed by
Google’s software engineers, are designed to help developers like us to develop
high quality applications. They outline the best practices when approaching a given
solution and what practices we should avoid as we begin programming. The basic

77

guidelines and standards cover user interface, functionality, compatibility,
performance & stability, and security. All of the criterias contribute to the longevity
and success of our Android application. If our application fails any of these criteria,
users will take notice of the issues and use our application less. So it is imperative
we make a high quality application from the start.

4.3.2 Android Application Guidelines: Design Standards
 Android provides common user interface design standards,

navigation, and notifications. It is recommended that we don’t alter any of the
system icons and it’s corresponding behaviors. If we must alter them, they should
resemble the old icon and behavior. Any deviation from the expected icon/behavior
can cause confusion among the user which would lead to a bad user experience.
The app needs to support Android’s “back button” functionality and dismiss any
and all dialogs when the user presses the back button. No matter what
stage/process within the app the user has executed, they must be able to navigate
to the home screen of the device anytime the user presses the home button.
Notifications must be stacked into a single notification object, and must only be
persistent if they are related to ongoing events such as music playing in the
background or phone calls. Application notifications cannot contain any
advertisement or unrelated content unless the user has given us permission. This
means we shouldn’t promote new vinyl records or vinyl players to the user until we
request permission from the user. We should only use notifications to alert the user
that something has occurred or relaying information from an ongoing event.

4.3.3 Android Application Guidelines: Functionality
 The next important criteria we must address is functionality. We must

ensure that our Android application provides the functionality we promise to our
users within the given permissions. Our application must only require the bare
minimum permissions to support the application’s core functionality. We should
also avoid requesting permission to private data like text messages or contacts
and paid services like banking or stock trading. If the mobile device has an SD
card, it’s preferable to install it on the SD card especially if the size of the
application is larger than 10MB. Audio shouldn’t play when the screen has been
turned off, locked, or over another application unless this is a feature of your
application and should resume when you reopen the application. The application
should support both orientations (landscape and portrait) in full mode without any
rendering issues. The application shouldn’t operate any service in the background
unless it’s part of the functionality. For example, the application shouldn’t maintain
the GPS/cell network connection while it is in the background unless it’s necessary.
The application should be able to restore/resume its previous state after the user
leaves the application, locks the screen, or from recent apps and if isn’t possible
to save the state, notify the user.

78

4.3.4 Android Application Guidelines: C.P.S
 Compatibility, performance, and stability could be arguably the most

important criteria of an application. If the application suffers from these issues, the
user would become frustrated and possibly forget the application. The application
must be stable enough to not crash, fault, freeze, or any unexpected behavior. The
application must be able to load quickly or provide some feedback otherwise. While
“StrictMode” enabled, the application must be able to perform without raising any
red flashes (performance warnings). The application should run the latest software
development kit (SDK) without crashing or reducing functionality. The application
must be able to support power management features created by Android unless
it’s absolutely necessary to disregard. Media playback must run without any issues
(lag, use and load, pixelated). The application must provide decent quality graphics
with no distortion in all multiple settings and display text in an acceptable manner.

4.3.5 Android Application Guidelines: Privacy & Security
 In order for our application to be published in the Google Play Store,

we must adhere to user data policies. Some data policies include storing private
data inside the app’s internal storage and accessing any data inside an external
storage must be verified. “Intents” must be explicit, use and enforce correct
permissions, and verified before use. No sensitive information will be saved to the
system or app log. Application components that share data with other apps can be
exported, define appropriate permissions, and use
“android:protectionLevel=”signature.”” Our mobile application must declare a
network security configuration and send any network traffic through SSL. All
libraries, SDKs and dependencies must be updated as soon as possible. We must
used cryptographic algorithms and random number generators provided by the
Android platform, no custom algorithms.

4.4.1 Android Open Source Project Coding Standards

 Android Open Source Project (AOSP) has created a set of standards and
rules for Java developers/programmers that want to contribute to the AOSP. These
rules aren’t necessarily applicable to the average android developer, but they are
good standards that everyone should abide by to develop an efficient and robust
application. These standards help ensure the stability and responsiveness of your
application. Future modifications and maintenance of the application would be
much easier due to readability and ease of understanding the programmer’s
intentions when developing the application. The AOSP standards outline the Java
language rules, library rules, style rules, and Java test style rules.

4.4.2 AOSP : Java Language Rules
 The Java language rules outline standards for dealing with exceptions,
finalizers, and imports. When you are writing code that utilizes a “try” and “catch”

79

statement, you should have some way of dealing with the “catch” statement (a.k.a
an exception) in case something in your application triggers it. Some acceptable
ways of dealing with the exception would be to throw the exception up to the caller
of the method. Another way would be to create a new exception that’s related to
the calling exception. Last but not least, you can handle the exception and have
corresponding code to deal with the exception appropriately. One thing you should
avoid doing is throw a “RuntimeException” because this will cause the program to
crash. You also shouldn’t catch generic exceptions because you might catch
exceptions that you would never expect like RuntimeExceptions. Generic
exceptions also hinder the benefits of exception handling because you aren’t able
to specifically identify and handle each exception accordingly. Since generic
exceptions catch all exceptions, the compiler won’t be able to warn the developer.
Without any warnings from the compiler, the developer won’t know how to handle
the exception appropriately or disregard it all together. Generic exceptions should
only be used for testing and catching all types of errors for debugging purposes.
Alternatives to using generic exceptions would be to use “try” and “catch”
statements for each exception, handle IO and parsing exceptions separately with
multiple “try” and “catch” statements, or allow the method to throw the specific
exception to notify the developer. Since Android doesn’t recognize finalizers, the
use of finalizers should be avoided. We can achieve the same functionality by
using a “close()” method. When importing classes from packages, the developer
should explicitly state what Java classes they want to import into the program. This
makes it clear to other developers about what Java classes the application is using
and makes it easier for maintenance. An exception to this rule can be applied to
java standard libraries like “java.util.*” or “java.io.*” and unit test libraries,
“junit.framework.*”

4.4.3 AOSP : Java Library Rules
 It’s ideal to be working with updated libraries and updated programming
conventions whenever possible. This increases the longevity of the application and
reduces the amount of maintenance in the long run. Creating new software with
deprecated libraries is not allowed due to the fact that it would become obsolete in
the near future and introduce complications and problems. However, if you are
working with older software, old programming conventions or deprecated libraries
are okay to use.

4.4.4 AOSP : Java Style Rules
 Classes and interface should include copyright information and description
of functionality at the top before the package and import statements. Nontrivial
public methods should have a description of its use and functionality, intuitive
methods don’t require comments. You should try to keep methods small and
specialized (under 40 lines), anything over should be broken up. Define all of your
fields at the top of the file or before the method call. Appropriately assign class
access modifiers (private, public, protected, none) to increase readability and
maintainability of your code and reduce future errors. Declare variables in the

80

associated method and initialize the variable appropriately. If a variable is
initialized with a return value that can throw an exception, you should initialize the
variable inside a “try” and “catch” statement. Loop variables should be initialized
inside the for loop for readability. Android import statements should be listed first
followed by imports from third parties followed by java and javax imports. They
should be all alphabetized in their respective groups with a separate line between
each group. This standard style increases readability between developers. Naming
conventions for fields as follows, non-public and non-static field names should start
with m. Any static field names should start with s while other field names should
start with lowercase letters. Any public static final fields or constants should be
noted in all caps with words separated by underscores. For example Public static
final FOO_FIELD = 3.14. Braces shouldn’t be placed on their own lines, they
should be placed on the same line as the code that uses them. Each line should
be limited to 100 characters long. However, there are exceptions to this rule.If a
comment line has a command or URL that happens to be longer than 100
characters or import lines. If you are to include any annotations, they should be
listed one-per-line in alphabetical order. The three common annotations are
@Deprecated, @Override, and @SuppressWarning. @Deprecated discourages
the use of old implementation/code and the developer should find an alternative
implementation. @Override is used to override methods inherited from superclass.
@SuppressWarnings should be used when the implementation is necessary and
there is no alternative that would eliminate the warning. They should be followed
with a TODO comment stating the condition that cannot be eliminated. Developers
should also use ERROR, WARNING, INFORMATIVE, DEBUG, and VERBOSE
keywords when logging information. However, the developer should use these
keywords wisely because they can negatively impact the programs performance if
too many are used. ERROR should always be used and logged when something
fatal happened inside the program. WARNING should always be used and logged
to notify the program/user that something serious and unexpected happened.
INFORMATIVE is used to note abnormal events in the program that aren’t errors
and they are always logged as well. DEBUG is used to examine and debug any
issues inside the program. You should use these annotations sparingly to avoid
any performance issues. VERBOSE should be used for anything else not listed
above and will only be logged during debug builds when surrounded in “if
(LOCAL_LOGV)” blocks.

4.5.1 Google Style : Android Developer

 Developers that follow the Google coding standards are said to be “in
Google Style.” This means the developer’s program strictly follows the Google
coding standards (aesthetic standards, conventions, and coding standards) that is
universally accepted by other developers and software development tools. These
standards ensure that the program written by a specific developer is easily read
and understood by other developers.

81

4.5.2 Google Style: Source File Basics
 The source file should have a case-sensitive name that matches with the
top-level class with a “.java” extension and encoded in UTF-8. The only special
character that is allowed inside a source file is the horizontal space character
(0x20) which implies that all other whitespace characters in string and character
literals are escape sequences (\b, \t, \n, \f, \r, \”, \’, and \\). Other non-ASCII
characters can be displayed as Unicode characters or Unicode escape (\u221e)
but convention discourages the use of Unicode escape outside of string literals or
comments.

4.5.3 Google Style: Source File Structure
 The structure of a source file should include the License/copyright
information followed by package statements followed by import statements
followed by one top-level class, all separated by one blank line for each section.
Any wildcard imports are discouraged as well as static imports for static nested
classes. Static imports are imported with normal imports. Group static imports
together in a single block and non-static imports in another block with a blank line
separating the two blocks. No blank lines between import statements in the given
block and must be in alphabetical order. Methods should be ordered by logic, not
by date added, and if there are multiple methods with the same, they should appear
sequentially.

4.5.4 Google Style: Formatting
 Any “if”, “else”, “for”, “do”, and “while” statements even if the statement has
no body or only has one statement. Braces follow the K&R style which means no
line break before the opening brace, line break after opening the brace, line break
before the closing brace, and include a line break after the closing brace only if the
brace terminates a statement or body of a method, constructor, or class. However,
empty blocks can choose to follow the K&R style or disregard it by closing the
braces immediately except with multi-block statements. Java code must follow the
column limit of 100 characters and anything that exceeds the limit must be line-
wrapped. However, some exceptions are include long URL or JSNI method
reference, package or import statements, or commented command lines. We
should include a space between open parenthesis/closing curly brace and any
reserved keyword (if, else, catch). A space is required before an open curly brace
except if it’s in an annotation or initializing an array. One space should be included
before and after an ampersand, vertical pipe, colon, double slash and arrows. This
rule doesn’t apply to two colons (::) and dot separator (.) because that’s part of the
java syntax. One space should be included after a comma, colon, semicolon, and
closing parenthesis. A space needs to be included between the type and the
declared variable. You are required to do one variable per declaration except in
the header of the for loop. Arrays can be declared as a “block-like construct” but
no C-style declarations. Switch block contains multiple statement groups that must
include one of the following terminating condition (break, continue, return, or

82

thrown exception). If you don’t use any of these terminating conditions, add a
comment to show and explain why the statement group will continue into the next
statement group. Each switch block should contain a default statement group
(case) but enum types are optional. Annotations that are applied to a class,
method, or constructor should appear after the documentation section with one
annotation per line. Numeric literals like the “long” use an uppercase suffix to avoid
any confusion.

4.5.5 Google Style: Naming
 This provides the standards and conventions when creating identifiers
(names) in the programs. Common rules that apply to all identifiers are as follows,
they should use only ASCII letters, digits, and underscores. However, Google Style
discourages the use of prefixes and suffixes like foo_, mFoo, and m_foo. Package
names should only be in lower-case and concatenated, no underscores. Class
names use UpperCamelCase (first letter of every word is uppercase) and are
usually nouns/noun phrases. For example, classes would be “FirstClass” or
“MartinClass.” Test classes use the same convention as class names but include
“Test” keyword at the end to indicate a test class. Method names are using
lowerCamelCase (the first letter of every word starting from the second word needs
to be capitalized) and they usually reflect verbs/verb phrases. For example,
methods would be named “sortingTrick” or “calcSum.” Constant variables
(immutable values or values that can’t be changed) contain only uppercase letters
with each word separated by an underscore and are usually nouns/noun phrases.
Non-constant variables (non-immutable values or values that can be changed) are
written in the lowerCamelCase format and the name resembles nouns/noun
phrases. Parameter names are written using lowerCamelCase and discourages
the use of one-character names. Local variables are written in lowerCamelCase
and they don’t follow the rules of constants even if they are final and immutable.
Variables that are type based (generic) use one of two styles. They can be a single
capital letter and possibly be paired with a single number or upperCamelCase
name followed by a capital letter. For example, it would be “FooMethodT.”

4.5.6 Google Style: Programming Practices
 All methods that override a superclass method, class method that
implements an interface method or an interface method that is repurposing a super
interface should include the @Override annotation. The only time you shouldn’t
have the annotation is when the parent method is marked with an @Deprecated
method. A good programming practice would be to handle caught exceptions, don’t
avoid. You should either log the exception or rethrow it as an “AssertionError” if it
is impossible to handle. The only time a developer could ignore the caught
exception if it was handled with a “try” and “catch” block. That way the system
would be able to gracefully handle the situation without crashing. When you are
referencing a static member (methods, variables, etc.), you should reference it by
the class name instead of the class instance variable. For example, if you create
an instance variable, FooClass aFooVar = “”, and it has a static method you want

83

to reference, you should always reference the static method by
“FooClass.aFooMethod” instead of “aFooVar.aFooMethod.” You shouldn’t
override an “Object.finalize” method, leave the job to the java garbage collector to
avoid any unforeseen issues.

4.5.7 Google Style: Javadoc
 Javadoc can contain information about the program, the developer, what
revisions were made, copyright information, and etc. It’s purpose is to give a brief
description about the class and the class members. They could be represented in
a block format where the first line has “/**” and on the next line “*” and some
comment and on the next line ending with “*/”.This all could also be done on one
line as well, it’s up to the user to decide. Block tags (@param, @return, @throws,
@deprecated) appear with a description that describes the following section.
Summary fragments are brief statements (incomplete noun phrase or verb phrase)
that detail the method’s return type or warnings. The format for this would be
“/**@return the customer ID*/”, not “/** Return the customer ID */”. Javadocs
should be used for every public class and public/protected members of the
particular class. You don’t have to use javadocs if the class members are self-
explanatory. Methods overriding superclass methods don’t require javadocs.

84

5 Project Design
The design of this project is split into two sections: hardware and software.

These two following sections will outline how the project will be designed and
implemented, both through hardware and software.

5.1 Hardware Design

The hardware designed in this project includes motor drivers, power
supplies, PCBs to connect components to the microcontroller, and the actual
record player.

5.1.1 Hardware Design Planning
This section details the ideas that were brainstormed for how to implement

the actual motor control and two-sided playback of the record. This is particularly
difficult because the motors to control the record player arm(s) need to fit inside of
the record player’s original encasing or additional encasing needed to be made.

5.1.1.1 Design A:
 The first design is specified to only play one side of a record. This design
uses two different stepper motors to control the pitch and yaw of the record player
arm. To clarify, the pitch refers to the angle which corresponds to the vertical
position of the arm, while the yaw refers to the angle corresponding to the radial
position of the arm in relation to the record. The yaw motor will move the entire
arm assembly which will move the arm radially along the record. This is the primary
motor that controls which groove will be selected by the device. As such, this motor
must be extremely precise and must be able to provide enough torque to move the
entire assembly. The pitch motor will control an armrest that the arm lays upon.
The armrest is attached to a wheel which rotates up and down slowly vertically.
The record player arm lies upon this armrest, allowing the arm to be gently lowered
onto the record. Note, the record player arm is not attached to the arm rest. While
the armrest is lowered more and more, the armrest continues to spin while the
record player arm is stopped by the record. This allows the arm to be lowered
without providing excess force to the record, which may ultimately damage it.
 It is possible to convert this design in order to play both sides of the record.
To do this, another tonearm must be added to play the bottom side of the record.
Like the top side, the bottom side tonearm will rest on another motor to raise and
lower it. To ensure adequate pressure is applied to the record, the arm
counterweight will be calculated to apply the necessary pressure upward.

5.1.1.2 Design B:
 The second design is specified to play both sides of the record. Much like
the first design, the second design relies on two different motors. Unlike the first

85

design, the second design moves the cartridge of the record player rather than
moving the arm. This is accomplished by attaching the cartridge to a belt which
moves it radially along the record. This belt extends beyond the edge of the record
and curves under the record. This will allow the cartridge to move, not only along
the top of the record, but also along the bottom of the record. This whole assembly
is moved up and down vertically by a motor. This motor relies on position controlled
feedback to apply the appropriate amount of pressure to reached the desired
sound quality. While this design provides the benefit of allowing the user to play
both sides of the record, there are several considerable drawbacks.

5.1.1.3 Design C:
 Design C is the other option for playing both sides of the record. Rather
using a conveyor like Design B, this design uses two separate arms which will play
the desired side of the record. Similar to the first design, a stepper motor moving
in the yaw direction will move both arms to the desired radial location along the
record. Unlike the first design, this will require alteration to the record player base.
To play beneath the record, there must be a portion of the record player, beneath
the record, hollowed out to allow the arm to move beneath the record. Rather than
the armrest mechanism described in Design A, the method to provide the desired
amount of pressure to the record will be a position feedback servo. A sensor in
either of the heads of the record player arm will detect a precise amount of distance
between it and the record. This distance is fed-back into the servo to ensure the
distance is consistent. This design has the benefit of playing either side of the
record but has significant drawbacks. The biggest drawback is that a large chunk
of the record player must be removed to make space for the moving tonearms.

5.1.1.4 Design Comparison:
Design A is the simplest approach, using counterweights to apply the

desired pressure to the record. Creating the conveyor for Design B may require
too much mechanical experience to be practical for this application given the group
members involved. In addition, the conveyor may result in a large decrease in
accuracy which is extremely important to meet the accuracy specification
requirement. The biggest drawback of Design C is the added complexity of a
position feedback system to apply adequate pressure to the record. Too much
pressure will cause scratching to the record and not enough pressure will result in
a decrease in audio quality. The position sensors in Design C only measure the
distance between the tip of the tone arm and the vinyl so the pressure (the desired
value to be held constant) is not directly measured. It is unknown how this could
potentially affect the sound quality. These position feedback sensors are also used
in Design B so the same argument can be made against that design as well.
Should playing the underside of the record substantially negatively impact the
sound quality of the audio playback, Design A allows for the simplest design to
accomplish one-side-playback. For these reasons, the design chosen for this
application will be the simple two-sided approach for Design A.

86

Figure 9 - Design A Concept Sketch

Figure 10 - Design B Concept Sketch

Figure 11 - Design C Concept Sketch

5.1.1.5 Vertical Arm Control
Translating the rotational motion of the vertical motor to vertical motion

posed difficulty. To solve this, several components were laser cut to perform this
translation. The full apparatus is show in Figure 26. The back of the tonearm rests
below the curved arm. The vertical motor is attached to the round shape. The round

87

shape, when turned, moves the curved arm upward. When the arm moves up, the
tonearm is lowered. When the arm is lowered, the tone arm is raised. When the
tonearm is lowered onto the record, the curved arm loses contact with the tonearm.
This is intentional so that the vertical motor does not apply force to the record.

Figure 12. Vertical Arm Model

5.1.2 Power Supply
For this project, four different voltages are required: 12v, 9v, -9v, and 3.3v.

For the 12v, a AC to DC wall adaptor was utilized to convert the 120v AC to 12v
DC. This 12v is then stepped down to 9v and 3.3v using DC to DC step down
converters.

One difficulty faced in this project was to convert a positive voltage to a
negative voltage to power an operation amplifier. As shown in Figure 11, this was
solved by using a 555 timer and voltage regulator to convert a positive 9 volts to a
negative 6 volts. This is sufficient to support the op-amp for the purposes of this
project.

 *

88

Figure 11 – Power Supply Schematic

5.1.2.1 Power Supply Requirements
The devices that will need to be powered include the record player itself,

the microcontroller, three motors (one for horizontal motion and two for vertical
motion), motor drivers, and proximity sensors. Each one of these components will
have a specific power rating and voltage that they should be run at. Exceeding the
power rating of a component could permanently damage the component, and
running at a voltage that is too low for the component is likely to affect the
component’s performance. In designing a power supply, it is also important to
understand the initial power input (a wall outlet) and what that source will provide.

 DC Voltage

Microcontroller 6.6 – 12 V

Horizontal Driver 3.3 V

Vertical Driver 3.3 V

Vertical Driver 3.3 V

Horizontal Motor 12 V

Vertical Motor 12 V

Vertical Motor 12 V

Table 15 - Power Supply Requirements

5.1.2.2 Converting AC Power to DC
In the United States, power is supplied from an outlet with a voltage of 120V

and a frequency of 60Hz. All of the components that need to be powered are run
with DC power, not AC, so it will be necessary to convert the power. Also, the
voltage will need to be stepped down to the appropriate levels. A circuit needs to
be designed to convert this power. This circuit sections that do the following:
transform, rectify, smooth, and regulate.

First, the input signal (from the outlet, 120VAC at 60Hz), needs to be
stepped down to a smaller voltage swing. For this, a 5:1 transformer is used first
in the circuit. A transformer has two coils, a primary and a secondary. This
particular transformer is a 5:1 transformer because the primary coil has 5 rotations
for every 1 in the secondary coil. This causes the input voltage to be stepped down
by a factor of 5. The output of the transformer stage of the circuit is 24VAC at 60Hz.

Next the signal needs to be rectified. The rectification stage of the circuit
essentially ensures that all of the voltage will be positive. This is done using diodes
that will prevent the flow of current in a certain direction. For this project, a full wave

89

bridge rectifier is used, which effectively takes the absolute value of the input
signal. The full wave bridge rectifier is made up of 4 diodes arranged in a square
bridge. The output of the rectification stage has only positive voltages.

After the rectification stage comes smoothing. Though the rectifier keeps
the voltage positive, there is still a roughly 15V swing in every cycle of the signal
as it moves between 0 and 15 volts. Adding a capacitor after this stage smooths
this signal. For this stage, a large capacitor is used. Essentially what happens is
as the voltage rises, the capacitor charges up. Then, as the voltage falls, the
capacitor slowly discharges. The capacitor has not fully discharged as the input
voltage starts to rise again. This causes the dip in the voltage to be much smaller
than before the smoothing capacitor. The output of the smoothing phase of the
circuit looks nearly like a DC signal, but with small increases and decreases in
voltage.

The final stage of converting AC power to DC is to regulate the voltage. A
voltage regulator is an integrated circuit component that does just that – regulates
voltage. It is rated to output a specific voltage is some voltage that is higher than
the output voltage is supplied to the regulator. It is important to choose a regulator
and to choose the previous components that will work together. For example, after
the smoothing stage, there could still be a swing in the voltage of about .5 volts. If
the smoothing stage had a voltage between 15 and 14.5 volts and the regulator
was manufactured to output 14.75 volts, it would fail. The output of this stage is a
DC signal.

5.1.2.3 Power Supply Design
The following image shows the schematic diagram of the power supply

created. There are three main outputs which, from top to bottom, output 12, 4 and
8 volts.

90

Figure 12 - Power Supply Schematic

5.1.3 Motor Control
The motor is controlled through a motor driver. In the final product, the motor

driver would be controlled from one of the GPIO pins on the microcontroller. In a
breadboard test however, the driver was DC biased and appropriately and
connected to the motor. Then a function generator emulated the output that the
microcontroller would product – a pulse signal at about 200Hz. This caused the
motor to step at 200 steps per second. Below is a picture of the breadboard setup
used to finish phase one of testing.

Figure 13 - Breadboard Setup Phase 1 Testing

91

5.1.4 Microprocessor
Once the microprocessor was received, it was necessary to test it to make

sure it was functioning as expected. To do this, first it was plugged into a computer
through the board’s USB port. Upon receipt of the microprocessor, code had
already been downloaded onto it to cause some indicator lights built into the board
to flash. Once the board was plugged into the computer, it was powered on and
the lights flashed as expected. Next, some code was uploaded to the board
through the Arduino IDE. Uploading this code was intended to test the boards
ability to have code uploaded, to test the output pins on the board, and to test the
board’s Bluetooth capabilities. The code that was uploaded would allow for a
Bluetooth connection to be made to the board through the board’s manufacturer’s
iPhone app. Once the connection was made and some text was sent to the board,
the board would output a voltage to one of its pins. A breadboard with a resistor
and an LED was connected to the microprocessor pin to confirm that the board
was outputting a voltage as expected once the Bluetooth connection was made.
Below is an image of the Blend v2 board with the LED circuit connected.

Figure 14 - Blend v2 Board with Attched LED Circuit

92

5.2 Software Design

This section of the paper will give in-depth descriptions, figures and
analyses of the implementation of the various software components contained
within the Vinyl Player 2.0 system.

5.2.1 Domain Model

Prior to diving into each individual element of the software, a domain
model is constructed through a variety of steps to visualize the conceptual
classes in the scope of the problem that the software side deals with. The
domain model follows the main success scenario for the system, which is the
primary use case that behaves exactly as it is intended.

The main success scenario, with no alternative workflows, of the Vinyl
Player 2.0 software system is as follows. The user places a new record on the
record player and takes a picture of the record using the phone camera. The
system identifies the record and then asks Discogs for more information on the
record. The system displays the information that is received from Discogs to the
user. The User selects a song to be played. The system calculates how far to
move the needle to play the selected song. The distance is sent from the system
to the record player. The record player plays the selected song.

 It is important to remember that while the software implementation of the
Vinyl Player 2.0 will, at least in part, be object-oriented, the domain model is not
a model of the software components itself, rather it provides inspiration for the
software components. Another integral aspect of creating a domain model is that
it is not a process that is solely done at the inception of the project, but an
iterative process that improves the accuracy of the model as the project goes on.
That is to say that there will be multiple iterations of the domain model, each
becoming slightly more attuned to the real-world problem that the Vinyl Player
2.0 deals with.

5.2.1.1 Initial Domain
This section will express the process of obtaining the initial domain model

of the Vinyl Player 2.0 that can then be used as inspiration for the object-oriented
implementation of the system. It is important to keep in mind that the domain model
is continually reassessed as more knowledge about the problem arises thus
improving the representation overtime.

5.2.1.1.1 Visualizing Concepts

The process of identifying an initial list of conceptual classes that effectively
illustrate the domain for the problem at hand can be done using two simplistic
techniques, a conceptual class category list and identifying noun phrases. Creating
a conceptual class category list is the first of the two techniques and is done by
using a standard set of conceptual class categories and grouping potential

93

conceptual classes for the problem into these categories. The conceptual class
category list for the Vinyl Player 2.0 software system is shown below.

Conceptual Class Category Examples

physical or tangible objects Record, RecordPlayer, Phone

specifications, designs or descriptions
of things

RecordDescription

audio Album, Song, Artist

roles of people User

containers of other things Phone, RecordPlayer

things in a container Camera, Screen,
RecordPlayerController, Motor,
Antenna

abstract noun concepts Accuracy, Communication

events Taking picture of Record, Tapping on
playback option

catalog RecordCatalog

Table 16 - Conceptual Class Category List

The next useful technique for formulating potential conceptual classes for

the domain model is a linguistic analysis of the main success scenario, which
consists of identifying nouns and noun phrases in the description of the ideal use
case and consider them as candidates for conceptual classes. This process is also
known as noun phrase identification. Determining conceptual classes for the
domain model using this technique must be done with care because words in
natural language are ambiguous, meaning that a multitude of noun phrases can
represent the same conceptual class, a noun phrase may incorrectly represent a
conceptual class, etc. Ultimately a combination of the two methods, as well as
other methods, is ideal to provide conceptual classes for the domain of the
problem. The initial list of conceptual classes for the Vinyl Player 2.0 software is:
Record, RecordLabel, RecordDescription, RecordCatalog, RecordPlayer, Phone,
Camera, MusicPlayer, Album, AlbumDescription, Song, CVSystem & User.

5.2.1.1.2 Adding Associations
Now that there is a list of conceptual classes that are encompassed within

the domain model, the next step is to specify the important interactions between

94

these classes. This is done using associations, which define the semantic
relationship between two or more conceptual classes that involve connections
between that instances of those conceptual classes.

The UML notation for the portrayal of associations is a line that connects
the conceptual classes with a name for the association and a multiplicity
expression at each end of the line. Multiplicity is a characteristic that specifies how
many instances of a class can be associated with one instance of the class it is
associating with. Associations are by nature bidirectional, but if it helps read the
diagram there may be a directional arrow inserted.

 Just as in the previous step to construct a domain model, there are a couple
of methods for formulating associations between conceptual classes that are
important in the domain. The first technique is identifying "need-to-know"
associations, which are connections between conceptual classes that express
some knowledge that need to be preserved. An example of this would be that the
MusicPlayer class plays and Album because it is necessary for the knowledge of
which Album is being played.

The next method mimics the process of creating a group of categories and
using those as inspiration that was seen for creating conceptual classes. This tactic
involves generating what is known as a Common Associations List, a list of high-
priority associations grouped under common categories. The Common
Associations List for the Vinyl Player 2.0 is shown below.

Common Association Category Examples

A is a physical part of B Record — RecordLabel, Phone —
Camera,

A is a logical part of B

A is physically contained in/on B Record — RecordPlayer

A is logically contained in/on B Record — RecordCatalog,
MusicPlayer — Phone,
CVSystem — Phone

A is a description of B RecordDescription — Record,
AlbumDescription — Album

A uses or manages B User — MusicPlayer

A communicates with B Phone — RecordPlayer, MusicPlayer
— RecordCatalog

Table 17 - Common Association Category List

5.2.1.1.3 Adding Attributes

The final phase of creating a initial domain model is to identify attributes that
go along with each conceptual class. In UML an attribute is defined as a logical

95

data value of an object such as integers or text. The notation for adding attributes
to an existing conceptual class is to make a second compartment in the box that
house the class and list the names of the attributes with their data type alongside
it.

It is at times difficult to decide whether to make an attribute or a separate
conceptual class and then create an association between them, but best practices
indicate that if an attribute can not be represented as a logical data value then it is
preferred to move it out of the class. Seeing that the domain model is purely
conceptual, these rules will not necessarily be applied in the actual
implementation.

5.2.1.1.4 Initial Domain Model Conclusion
 The product that is produced by the previously explained steps is the
domain model that will serve as inspiration for the object oriented implementation
of the Vinyl Player 2.0 use case. The major conceptual classes that were found
through the the first step of creating the model such as MusicPlayer and
AlbumDescription and all of the associations that interconnect the diagram give an
abstracted view of how the system works. Through multiple iterations of improving
the requirements for the Vinyl Player 2.0 the domain model is also bound to be
modified through addition and deletion of conceptual classes, associations and
attributes.

Figure 15 - Vinyl Player 2.0 Domain Model

96

5.2.2 Embedded Programming

The microcontroller will be a crucial portion of this project, as it will be the
main relay between the user’s device and the record player. It will connect to the
user’s device and control all of the motors that affect the record player. The
programming of this microcontroller is known as embedded programming.

5.2.2.1 Embedded Programming Flowchart
 The following flowchart outlines how the microcontroller will relay with the
user’s device and control the motors.

Figure 16 - Embedded Motor Control Flowchart

As this flowchart demonstrates, the logic flow for the embedded

programming will start with the microcontroller waiting for an input (where to move
the arm) from the app. Once an input is received, the turntable will be stopped,

97

and the clutch connected to the motors will be engaged. The microcontroller will
output on the appropriate pin to raise or lower the appropriate arm. Then, it will
step the horizontal motor clockwise until the sensor flag is raised on the
microcontroller. At this point, the microcontroller will have a starting point for the
horizontal motion. From there, the microcontroller will calculate how many steps
need to be made to reach the user’s inputted song on the record. Once the
horizontal motor has been moved in place, the appropriate arm will be raised or
lowered onto the turntable, the clutch will be disengaged, the turntable will be
restarted, and the program will wait for user input once again.

5.2.2.2 Embedded Programming Implementation
In implementing the embedded programming, first the programming

environment needed to be set up. Once the microcontroller was received, the
appropriate software to upload the code had to be downloaded. Arduino IDE 1.8.0
was used to write code and upload it onto the microcontroller. Once it was
downloaded, it had to be setup for the specific microcontroller used. To do this, the
board used had to be specified and an additional library for the Blend 2 was
installed. After that, some of the example code was used and uploaded onto the
microcontroller to confirm that it works. The code worked as expected.

The microcontroller package that was downloaded onto the Arduino IDE
also included basic code for connecting to Bluetooth, and that was also tested.
From there, it was necessary to output a voltage to the pins. To do this, in the code,
specific pins were declared as outputs and a high signal, delay, low signal, and
delay were written in a loop. An LED was connected to the specified pin, and it
flashed on and off, confirming that the pins work.

Since the Bluetooth and I/O capabilities of the microcontroller were tested,
they could be used to implement this project. The user’s application will send a
location on the record that the arm needs to move to. All the stepper motor control
and clutch engagement/disengagement described in the Embedded Programming
Flow section above will be implemented by outputting a voltage to the specific pin
that the motor and clutch drivers will be connected to.

The microcontroller will also need to convert the position on the record
player to a certain number of steps on the stepper motor. The motor purchased for
the horizontal motion of the arm has a step angle of 1.8 degrees. The following
formula can be used to calculate the distance that the needle of the arm will travel
when the stepper motor steps a single step.

𝒅 = 𝟐𝝅𝒓(
𝒂

𝟑𝟔𝟓
)

Equation 1 – Needle Distance Calculation

In this formula, r is the length of the arm and a is the step angle. Because

the arm of the record player is 16 cm long, each step of the motor connected at
the base of the arm corresponds to .5 centimeters. As each groove is about .013
centimeters apart, this is not accurate enough. Microstepping, however, will

98

decrease the step angle of the motor. If the motor is microstepped to make the
angle 1/16th of the original size, each step would correspond to .03 cm of motion
on the record. This should be a small enough movement to be within 5 seconds of
the selected song. Also, since each step corresponds to .03 cm along the record,
the precise number of steps required to reach a specific location on the record
player can be calculated.

5.2.3 Server Architecture
The application to control the record player will be paired with a server that

will store and retrieve information that the application will require. The server will
store user and vinyl record information, perform authentication for the user, and
fetch information from the Discogs API whenever it is not available in the server
database. The server will be developed in JavaScript using Node.js and Express.js
to handle server-side web requests, PostgreSQL to store the data, and Heroku to
store the data.

5.2.3.1 Initial Development
Node.js makes implementation of a web server very simple and easy. This

section will outline the steps taken in development. First, a new repository was
created in GitHub and was initialized with a .gitignore file that is specific to a
Node.js project. The project was then cloned locally for development to begin. The
project now needed to be initialized as a Node project. Once Node was installed,
the script ‘npm init’ was run on a command line in the directory of the project. This
initializes the project by adding the default Node dependencies and creating a
package.json file. This file is a general outline for how the project is run and what
dependencies are required. This file allows anyone with Node installed to clone
the project and run it with all of the dependencies pulled in automatically. Next,
some additional dependencies were added.

Additional dependencies are added in a node project by using the command
`npm install [node_module_to_install] --[options]’. The node modules installed
included express, pg, pg-query, and eslint. Express is a node module that allows
for quick server development. Both pg and pg-query are used to connect to and
generate queries to a PostgreSQL database. Eslint is a tool that helps developers
keep code formatted correctly by giving warnings when formatting is incorrect.The
options used in installing these dependencies were ‘save’ and ‘save-dev’. The
save option automatically adds these dependencies to the package.json files so
that other developers using this project will be able to install the same
dependencies. The save-dev option is similar, but the dependencies added with
that option will only be installed in a development environment. Once
dependencies were added, an initial commit was made and pushed to the GitHub
repository, and web request handling was begun.

99

5.2.3.2 Web Request Handling
Handling web requests are made very simple through express js. First, a

file called ‘server.js’ is created. This is the initial file that is run on startup, as
specified by the package.json file. This file, like all of the other server-side files,
starts by importing dependencies specific to that file. This is done by calling
‘require(dependency)’ and setting the results of that import to a variable. This
variable can then be used and passed as necessary. For this file, the
dependencies imported are express and routes. Routes is a file that will be created
next and will contain all of the possible paths that the web request could take. The
express app created by calling the express dependency is passed to the routes
module in order to handle these routes. Then, any paths that we not accounted for
by the routes file are caught in the server.js file, which returns a 404 (not found)
response. The app is then told to listen on a specific port.

The routes.js file contains most of the code to handle requests. The only
dependency used by this file is ‘db’, which is a file that will be made later to set up
and configure a connection to the Postgres database. The db dependency is
assigned to a variable called ‘pool’. This variable has a function built in called
query, which accepts a query string, an array of parameters to be passed to the
query, and a callback function, which is called after the query to the database is
completed. The routes file exports a function that, when called by the server.js file,
parses which path the web request was sent to and what type of request was sent
and calls a function to handle that specific path/type combination. For example, if
a POST is made to the route ‘records/search/:name’, the routes file will call the
function that searches for a record with the given ‘name’ parameter, and returns
the results. A specific route will be set up to authenticate users, and to search for
specific artists, records, and songs.

5.2.3.3 Searching For Records
The main purpose of the web server is to give the application record

information as it is requested. There will be two main types of searches for
information, searches for data that should already be in the server’s database and
data that is not available in the database and therefore must be received from
elsewhere.

The user will be able to have a saved catalog of their records, so those
records will be stored in the database. Whenever the user makes a taps to view
their catalog from the application, a POST request will be sent to the server at the
path “/getCatalog/:userId”. Once the request is received by the server, the request
will be routed to the “getCatalog” function. The request will contain the user’s id,
so the function will query the database for all records that are in that user’s catalog.
The results of the query should contain all of the records in the user’s catalog, with
the record’s name, artist name, and album cover art. Those results should be
returned to the user. From there, if the user selects on of those specific records in
their catalog, the same process should happen. A POST request is sent to the
server from the user’s application (this time to a different path). The request should

100

return all of the song names and durations of songs for all of the songs that were
in the record that was requested.

If the user searches for a record that is not yet in their catalog, however, the
process gets a bit more complicated. Since the query text entered could be a
search for any number of records that have the same name, however, all records
with that name should be returned. Since the database only stores records that
have been added to the database as users add to their catalog, the results of this
request must be gotten from a different source. From their, an API call is made to
Discogs, an open source database that contains information on millions of records,
as discussed in the research section of this paper. The text entered into the search
bar by the user will be sent in the API call to Discogs, which will return all of the
records that have a name similar to the text entered. Once the results of the API
call are returned to the server, the server will reformat the data into a format that
is more suitable for the application to use and return the data to the user’s
application, which will display the data to the user.

If the user selects on of the results of the API call, a similar process will be
used. The id (from Discogs) of the record that was selected will be used to make
another API call to Discogs, this time requesting specific information about that
record, such as song titles and times. That data will be returned to the user’s
application for display. If the user chooses to add that record to their catalog,
another request to the Discogs API will be made to request artist, record and song
data for the record cataloged. That data will be inserted into the server’s database
for future use.

5.2.3.4 User Authentication
When storing user information, it is important that the information is safe

and secure. Email and password information cannot be stored in plain text, but
must be converted to a secure has, which is stored. There are many different
algorithms for generating a secure hash. The following section will discuss the
process of generating a hash and how it was used to store user information.

A secure hash is generated by using what is called a one-way computation.
These are computations that are easy to make but, if given the result of the
computation, are very easy to find the original inputs for. So, whenever a password
is entered, this one-way computation is made on the password, generating a hash
for the password entered. Hackers have gotten good at reversing these functions,
though, so the result of the function is then fed back into the algorithm for multiple
iterations (on the order of 20,000). One thing to note about these functions is that
the same input will always produce the same output. Since there are some
passwords that are common among users, this would lead to duplications of a
single hash in the database. If a hacker was able to gain access to the entire table
of data, they would see that a certain password was used many times (because of
the duplicates), thus making it easier to find out the passwords. The solution for
this problem is using a salt.
 A salt is a random hash of digits that is used whenever making a password
hash. A salt tends to be 16-256 characters long (180 for this project). Whenever

101

the password is used to generate a password hash, the salt is concatenated to the
original password before generating the hash. This makes it so that even if two
users use the same password, they will generate a different password hash. Both
the salt and password hash are stored in the database, but the original password
is not.
 When the user logs in from the application, the email and password entered
is sent to the web server. This web server receives the email and password and
queries the database for the email, password hash, and salt that corresponds to
the email address received from the application. The password sent from the
application is then concatenated with the salt and the password hashing algorithm
is used on the salt/password combination. If the result of this algorithm generates
a hash equivalent to the password hash that is stored in the database, the user is
successfully authenticated, and that result is sent to the application. If the two
hashes do not match, a failed response is sent to the application.
 Whenever a user is created from the application, the email and password
entered is sent to the web server. At the web server, the database is queried to
confirm that an account for that email does not already exist. If the user already
exists, an appropriate response is then sent back to the application. If the user
doesn’t exist, a new salt is generated, and is used with the password to generate
a password hash. The generated salt, password hash, and email are saved to the
database and a session id for the user is returned.

5.2.3.5 Deployment and Database Creation
This server was hosted through Heroku, a company that makes it very

simple to host web servers. A new project was created in Heroku, and credentials
to that GitHub repository were given. Heroku will automatically deploy, host and
(re)build the project every time code is pushed to a specified branch (in this case,
master) of the GitHub repository. Also, heroku has an addon to create a
PostgreSQL database. This addon was used to create the database. The
credentials to access the database (host address, database name, user, and
password) are supplied by heroku, and these credentials were used to configure
database connections. Now that the project was hosted, the address https://vinyl-
player-server.herokuapp.com/ could be used to access the app. The free ‘hobby’
version of heroku was used for deployment, which sleeps after 30 minutes of
inactivity. For $7 a month, the app would never sleep.

5.3 Computer Vision Development

The implementation of the computer vision component of the Vinyl Player
2.0 has the task of taking an image of a vinyl record from the camera of the user
and being able to produce the album and artist that will be present on the record
label and the center of the analog medium. This objective will be achieved using a
combination of the computer vision library OpenCV and the machine learning
library TensorFlow as well as a number of popular Python libraries. All of these
technologies are used to create a convolutional neural network that will process
the images and will independently recognize patterns in images of vinyl records to

https://vinyl-player-server.herokuapp.com/
https://vinyl-player-server.herokuapp.com/

102

obtain methods of determining the classification of text on the record label. A hand-
written feature, such as the torus nature of a vinyl record, can also be added as
input into the neural network component to simplify the classification of the text in
the inputted image.

5.3.1 Dataset
The dataset that the network will be trained on is an important decision as

it determines the type of preprocessing and architecture that will be utilized for the
problem. It is crucial to train the network with a dataset that is representative of the
data that is expected to be observed in the actual usage of the system. Due to the
specificity of analyzing text from record labels one major decision was whether
creating a dataset that conforms to the the task of record label OCR or utilizing a
pre-existing dataset for general OCR and altering the record label image to be in
the form of this dataset would be best.

The first option of creating a dataset from was attempted as it appeared like
an optimal choice given it would relieve the need of any excessive processing on
the record label image. Each sample in the record label dataset contained a raw
image of a record label and a json file that corresponded to each image containing
the text in the image. Ultimately this approach produced poor performance, which
can be attributed to two main reasons. A major obstacle of creating a dataset for
machine learning is that there needs to be a sizeable amount of data for the
network to learn and not underfit the task at hand. The self created dataset only
comprised of about 200 samples, which is one of the reasons the network did not
train well. The secondary reason is that the labels in the json file that corresponded
to each record label image might have been too vague. While each json file did
have all of the text in the image the pixel position of each piece of text was not
there, which could have been used to further check the accuracy of the network
output.

After not succeeding with training using a self-made dataset it was decided
to utilize a pre-existing dataset and put the raw record label images in the format
of the selected dataset. A natural scene character dataset was chosen as the font
and styles of the text on the record label could vary wildly and may not have trained
as well with a regular hand-written character dataset. The dataset consist of 50k
images containing a single character of a variety of quality and sizes making it a
prime dataset to train the network on as it will not overfit to specific quality images
or styles of text. The process of getting the record label image into the character
representation that the network is trained on is explained in section 5.3.3.

5.3.2 Image Representation
The images inputted into the deep learning implementation of the computer

vision software system of the Vinyl Player 2.0 will need to be represented in a way
that that can be easily analyzed by the program. Fortunately an image is simply an
array of pixels and each pixel has a value for the intensity of the color, so an image
can be expressed as an array of values ranging from 0 to 256. This form of image
representation is highly used as it still perfectly characterizes the features of the

103

image. If an image has multiple colors (channels) it can broken up into each of the
RGB colors and then a unique pixel intensity array can be obtained.

 The process of obtaining an image and then extracting the pixel
intensity is relatively simple using the OpenCV library. The image to be analyzed
is first loaded as a matrix using the imread(filename) function. Next to obtain the
pixel intensity value matrix from the image there needs to be some known
information about the image for the parameters of the method, which is whether
the image is multi-channel and the image type. Assuming that the image has only
one channel and the image type has a pixel coordinate representation of x and y,
as opposed to Point representation, accessing the pixel intensity values can be
done with the OpenCV method image.at<uchar>(y, x), where image is the matrix
that represents the loaded image file and x and y represent the pixel coordinate
position. An example of the pixel intensity values that have been normalized to be
in between 0 and 1 for an image is shown below.

Figure 17 - Pixel Intensity Matrix Example

5.3.3 Text Segmentation
Record labels contain a variety of text about the record such as the album,

artist, year released, etc. which makes it a prime candidate as the input image into
the optical character recognition process. Due to the network being trained using
a character dataset the input into the network should be the individual characters
from the image of the record label. This process is accomplished by performing
linear segmentation of the image to a word or block of words and then performing
a second round of segmentation on the segmented words to obtain the characters
for each block.

Each round of segmentation follows the same general process of denoising,
thresholding, dilating, erosion and obtaining contours. An example of the full
process can be seen in figure x.x, which will be repeated for each contour derived
in (d) to obtain characters that will be input into the network. Thresholding is the

104

main method for segmentation as it effectively turns the image pixel values from a
range from 0 to 1 into a binary values where every pixel is either 0 or 1. Deciding
whether any given pixel is transformed from its original value to 0 or 1 depends on
the type of thresholding is used with the simplest form, Simple Thresholding, just
defining a constant value from 0 to 1 (e.g .5) that each pixel value is tested against.
Simple thresholding does not perform well for images with varying light conditions,
so the more optimal adaptive thresholding is used, where the cutoff value each
pixel value is tested against is derived from the mean of pixel values in a defined
neighborhood area. The binary image produced after adaptive thresholding is
shown in (b).

 (a) (b)

 (c) (d)

Figure 17 – Text Segmentation Example (a) Original image (b) Image after thresholding

(c) Image after dilation (d) Contours from image

The point of thresholding is to greater represent the edges that are present

in the image which is necessary for effectively detecting the contours or boundaries
of the text. Erosion and dilation aim to further the refinement of the boundaries for
obtaining the contours. Dilation is performed directly after thresholding and
increases the boundaries of the object in the foreground (white boundaries) to
make the boundaries more prominent and joins broken pieces of the edges.
Erosion is the opposite of dilation and aims to reduce the thickness of the
boundaries, so with both combined more defined contours can be obtained without
having the overlapping boundaries.

Once the record label has been segmented to obtain word(s) and those
words then segmented again the character images segmented can be inputted
into the network for classification.. It is also important to have the contours sorted
correctly so the output of the network is assembled in the order that is should be.

105

5.3.4 Feature Extraction
A feature with regards to computer vision is an attribute of the dataset.

When dealing with neural networks, features are effectively the input nodes that
are utilized to create a complex representation of the problem through the hidden
layers. One technique for obtaining features for input into the neural network is to
use the knowledge of the problem and dataset to obtain telling attributes and using
a classifier on the image to determine if an image has the feature.

Do to using a convolutional neural network for the Vinyl Player 2.0's
implementation the process of feature extraction is simplified as there are multiple
layers prior to the deep neural network component that obtain the features of the
dataset independently. The functionality and process to create the layers of the
CNN that will perform feature extraction will be further articulated in the
accompanying sections.

5.3.4.1 Convolution Layer
A convolution is an integral that takes two functions as input and returns a

modified version of one of the functions. The mathematical definition is shown
below.

(𝑓 ∗ 𝑔)(𝑡) = ∫ [𝑓(𝜏) ∗ 𝑔(𝑡 − 𝜏)]𝑑𝜏
Equation 2. Convolution Integral

In a convolutional neural networks, which derives its name from convolution

is done by taking the pixel intensity value matrix that is obtained from a sample in
the dataset and multiple it by a 3x3 matrix known as a feature detector or filter to
obtain a feature map, a smaller matrix relative to the pixel intensity matrix. The
application of this operation is to reduce the size of the image to decrease the time
it takes to process the image. An important property of the feature map is that the
spatial relationship of the pixels in the image is undisturbed meaning that even
though there is a loss of data by performing convolution on an image the
information relevant to the feature detector is preserved. There will be a sizeable
number, around 30, of feature detectors used for the convolution operation against
the input image to give focus to different areas of the image. There can be more
than one convolutional layer in the CNN.

The machine learning component of the computer vision software is
implemented using TensorFlow and creating convolutional layers for a CNN is
effortlessly done using the API. An interface for a 2D convolutional layer is
implemented in the tf.layers.conv2d class and added to the CNN simply by calling
its constructor which takes a variety of inputs, the most essential being the input
layer of the convolutional neural network, the number of filters in the convolution,
the dimensions of the filter, and the activation function of the layer. It was
previously stated that the dimensions of the feature detector is 3x3 and while the
TensorFlow library allows for this to be variable the convention is 3x3, with 5x5
also being a popular option. While the OpenCV operations described in section
5.3.2 involves matrices, TensorFlow of course uses tensors and thus there would
be a step for the conversion.

106

5.3.4.2 ReLU Layer

After the convolution is a layer that is virtually used as a supplement to the
convolutional layer. The ReLU layer is designed to take the feature map that is
derived from the previous layer and run each value from the matrix through the
rectifier activation function. The rectifier functions returns a zero value for non-zero
negative input and acts as a linear function for positive input, returning whatever
value the input is. The purpose of this layer is to introduce non-linearity into the
image, which is useful due to the fact that data that will be found in the vinyl record
images and most of the data in the real world will not include negative values.

 This step is simply implemented and in TensorFlow it is conveniently
include in the constructor of the convolutional layer. The activation function is one
of the more important parameters to the tf.layers.conv2d constructor that was
described in the previous section and can be chosen to be the rectifier function by
passing tf.nn.relu to this parameter. Other activation functions can be used but the
rectifier function is the most popular and the most applicable to the classification
and recognition tasks required from the Vinyl Player 2.0 implementation.

5.3.4.3 Pooling Layer
Once the vinyl record image has been convoluted and passed through the

rectifier activation function the tensor that represents a sample from the dataset of
records or a unique image of a record will be downsampled via the pooling layer.
Again reducing the size of the tensor will retain the important spatial relations
between pixels. Another benefit of the pooling layer of the convolutional neural
network will be to account for possible distortion in the feature map.

The type of pooling that will be utilized for this application will be max
pooling. Max pooling is implemented by first defining a tensor with 2x2 dimensions,
which is the convention but not written in stone, and place this tensor in the top left
corner of the feature map. Then the largest number of the feature map that is within
the 2x2 tensor is placed in a pooled feature map. This process is repeated after
shifting the 2x2 tensor by a certain number of cells known as a stride and repeating
the process. The resultant tensor will have a reduced dimensionality from the
feature map and will contain the maximum value from each iteration of the masking
tensor used on the filter. The pooling process is applied to each individual feature
map that was obtained from the convolution layer.

The TensorFlow implementation of adding a pooling layer to a convolutional
neural network is similar to the process of adding a convolution layer as it is simply
adding calling the constructor of tf.layers.max_pooling2d class. The relevant
parameters that go into this constructor is the preceding layer's output (feature
map), the dimensions of the tensor that will be used to go over the feature or pool
size as TensorFlow documentation coins it and the dimensions of the stride that
the pool will take. The pooled feature map that is outputted from the pooling layer
is representative of the high-level features of vinyl record database. The string of
layers from convolution to pooling can be repeated multiple times where the input
of the new convolution layer is the output of the old pooling layer or the pooled
feature map, which can allow for a more refined set of high-level features.

107

5.3.5 Deep Neural Network
The feature extraction process that done via the convolution and pooling

layers has been proved to perform much higher at tasks such as text recognition
and natural language processing than simply hand-picking features, which is why
the convolutional neural network is an optimal choice for the Vinyl Player 2.0
software system.

Once this process is done the final layer, known as the dense layer in
TensorFlow's documentation, is a deep feed-forward neural network that takes the
values from the pooled feature map tensor as input. The implementation of this
neural network can also be broken up into layers, which are virtually sub-layers in
the context of the convolutional neural network.

5.3.5.1 Input Layer
This layer of the deep neural network will have a neuron for each individual

value in the pooled feature map obtained from the pooling layer. Due to the pooling
layer only outputting a 2D tensor, it is necessary to reshape the tensor so it can be
inputted into the neural network. This process is called flattening and is done in
TensorFlow simply by using the tf.reshape() method and passing the pooled filter
as a parameter.

 The normalized values of the reshaped pooled feature map will be
connected to the first fully-connected layer in the neural network through weights
that can be given some default, most likely 0, for each feature.

5.3.5.2 Fully-Connected Layer
An aspect of the deep neural network that appears in a CNN that somewhat

sets it apart from any general implementation of the network is that the hidden
layer, or layers that are in between the input and output nodes, are fully-connected.
This characteristic of the neurons in this form of layer means that each neuron in
the layer has a connection to every neuron in the previous layer. Aside from this
aspect the fully-connected layer is the same as a regular hidden layer found in
deep neural networks.

The purpose of the neurons in the fully-connected layer is to take the
weighted inputs and then pass the result through an activation function, such as
the rectifier function that was mentioned in the convolution layer, to create a feature
that expresses new knowledge for the problem at hand. The dense layer or fully-
connected layer is produced in TensorFlow by using the tf.layers.dense
constructor and passing it parameters that will both append it to the existing
convolutional neural network and specify characteristics about the layer. Some of
these characteristics include the number of neurons is the layer and the activation
function that is used in all of the neurons in that layer. Note that tf.layers.dense
only adds a single fully-connected layer to the CNN and due to the fact that a deep
neural network is defined sa has having multiple hidden layers the constructor for
tf.layers.dense will have to be called a number of times with the previous layer
being a parameter in each new layer.

108

5.3.5.3 Output Layer

This is the final layer in the deep neural network component of the CNN is
the output layer which is what will classify the words that are recognized from the
record label as being the artist, album or neither. The output of each neuron in the
output layer will be some value ranging from 0 to 1, which states how sure the
system is in classifying each recognized word. Producing the output layer of
TensorFlow is done by adding another dense layer, but this time using the string
'dropout' as the inputs parameter and using the unit parameter to specify the
number of output nodes that should be present in the layer. The activation function
for this layer will often be the softmax function as opposed to the rectifier that is
used in many other layers of the network. This activation function is utilized with
the tf.nn.softmax class.

5.3.5.4 Backpropagation
The actually learning that occurs in the convolutional neural network is due

to the backpropagation process that occurs after the output layer of the deep
neural network in the CNN gives values for a sample in the dataset. The accuracy
of the outputted value will be checked against the actual value that is given in the
dataset. This is done using a cost function, a popular choice being the following
equation, where 𝑦′is the value outputted by the neural network and 𝑦is the actual
value.

𝐶𝑜𝑠𝑡 = ∑ [1/2 ∗ (𝑦′ − 𝑦)2]

Equation 3. Cost Function

The goal of the convolutional neural network is to minimizes the cost
function because that would mean that the system is correctly classifying with a
high frequency. The minimization is done through gradient descent and from that
an update in all of the weights in the convolutional neural network will be performed
to tune the model for higher accuracy.

In TensorFlow once the costs are calculated an optimizer that uses that
gradient descent technique can be used vias the the
tf.train.GradientDescentOptimizer class that takes the learning rate of the system
as a parameter to the constructor. Once an instance of this class is created then
the optimizer.minimize() method can be used to reduce the cost function by
adjusting the weights in the model. This method takes the costs and the model as
a parameter. The updated model is then returned.

5.4 System Design & Schematics

This section is dedicated to system design and the various schematics used
in the project. This includes the schematics for the boards used in the project that
will be edited to create the final pcb for this project.

109

5.4.1 A4988 Board Schematic
This is the A4988 carrier board schematic. Rather than create the entire

board from scratch, the A4988 data sheet gives the Eagle schematic for the board.
This board will either be edited and used to be implemented into the pcb or
mounted onto the pcb.

Figure 18 - A4988 Board Schematic

5.4.2 BLE Nano 2 Board Schematic
This is the schematic for the BLE Nano 2 Board. This is the board that will

be used to control the Bluetooth communications and the motor drivers. The I/O
pins connected to the MCU will be connected to the various motor drivers and
other components that are required to be controlled. Please refer to the testing
section for additional information on how these pins will be connected.

110

Figure 19 - BLE Nano 2 Board Schematic

5.4.3 Final PCB Schematic

Below is the final schematic and board to control . This schematic includes
components to control all switches, motor drivers, clutches and sensors.

Figure 19b – Final PCB Schematic

111

Figure 19c – Final PCB Layout

5.5 Software Flow Chart

Below is a diagram that outlines the process within the mobile application.
It models how the user will transverse the mobile application and how the system
will respond.

112

Figure 20 - Software Flowchart

113

5.6 GUI Design

 The Android application will have multiple GUI interfaces or “activity” as
Android likes to call them. Our Android application will have a GUI for the Login
page, the home screen, a page to add/modify/delete vinyl albums, and a media
player. The following sections will introduce some information about the GUI
design and why it was designed.

5.6.1 Login Page

 The image below is the basic user interface for our home screen. This will
be the first page the user will visit when they access our mobile application. The
user will be asked to sign up for an account if it’s their first time signing in or to
input their previous credentials to log into their account.

5.6.2 Home Page

 This will be the next screen you will see after you “sign up or login.” This will
be known as the user’s home screen where they will find most of the basic features
of the mobile application. From initial inspection, the application will greet you and
present a profile picture of you, the previous vinyl albums and songs you recently
played, and a floating widget that will bring you to your camera. The camera will
allow you to take a picture of the vinyl label which will add that vinyl album to your
collection. We will identify and pull the information from the vinyl album and display
it down below.

5.6.3 Add Vinyl Album

 The following image below is the “add vinyl album” page. This is where
users can add the vinyl album manually if the camera cannot correctly identify the
vinyl label or there is no vinyl label. The user will be able to upload a picture of the
vinyl label and input the following information about the vinyl album. We need to
know the size of the album in inches as well as the number of songs and the
duration of each song. Once the user has input this information, the information
would be saved in a local database or in the phone’s storage.

5.6.4 Music Player

 After the user has taken a picture of the vinyl album, the next step would be
to play a song from the album. The image below display the basic layout of the
media player. You will be shown an image of the vinyl album you have taken a
picture of, information about the band, release data, and song list. You will be able
to scroll through the song list and pick which specific song you would like to play.
You will also have the basic media controls (back, forward, play, repeat and
shuffle).

114

5.6.5 GUI Design Mockups

The following images are the GUI Design mockups. From top to bottom and
left to right, the mockups are for the login page, the home page, the add vinyl album
page, and the music player page. The GUI designs keep in line with standard
Android user interface styling.

.

Figure 20 – GUI Mockups

The displayed graphical user interface from top to bottom, left to right are the
catalog or home screen, add vinyl record page, side menu, music player, and
search bar and results.

115

6 Testing

In such a large project, unit testing plays a huge part in successful
implementation. As components are ordered and received, they need to be
individually tested to ensure that they are working as expected and to confirm their
safe operating voltages. As components are put together, regular testing is
required to ensure that the components continue to function as expected. The
components that need to be tested are the record player, motors, motor drivers,
microcontrollers (and their pin outputs), motor accuracy, PCD output, and more.
The following section outlines how each of these components were tested, and the
final results in testing these components. Additionally, below is a picture of all of
the components that have been received for the project. The picture contains the
Stanton T.62 record player, three packaged A4988 motor drivers, a breadboard
with one unpackaged A4988 motor driver, the Blend v2 development board, two
BLE v2s, a USB uploader for the BLE v2s, and three motors (one of which has the
planetary gearbox to allow for microstepping).

Figure 21 - Project Components

116

6.1 Record Player Testing

A few factors of the record player needed to be tested as it was received.
The factors tested were power, rotation speed, and sound output. To test the
power, first the record player was turned on.

To test the rotation speed, the record platter was first marked at a single
point. The platter was set to spin at 33 RPMs, and the rotation speeds were
measured with a stopwatch. Then, a record was placed on the platter and the
needle dropped to make sure the sound outputs as expected.

6.2 Motor Testing

One of the most important aspects of this project is the control of the
tonearm movement. Because of this, proper testing of the motors is extremely
important. The testing of the motors will be carried out in several phases. This first
phase will be spent on trying to achieve rotation of the motors using lab equipment
and the A4988 stepper motor driver. The second phase of testing will try to
implement the use of a microcontroller to more accurately test the precision of the
steps of the motors.

6.2.1 Phase One Motor Testing

This phase of testing will first test if the stepper motor driver A4988 is
functioning properly. A successful test of the A4988 driver should consist of
successfully starting the rotation of a stepper motor. This phase of testing will not
require a microcontroller as the stepper motor driver should be able to be
controlled with the lab equipment in the UCF Senior Design Lab.

6.2.2 A4988 Stepper Motor Driver

 The A4988 Stepper Motor driver is controlled using 16 pins. The A4988
datasheet contains an example of how the driver is operated.

117

Figure 22 - A4988 Datasheet Example

Since this phase of testing will be testing the driver and the motor without

the microcontroller, some of the pins which connect the microcontroller to the driver
will be connected to a high or low voltage source depending on the requirements
of the pin. One of the pins which will not be connected to a constant voltage source
is the STEP pin. This pin will be tied to a function generator outputting a square
wave. This square wave will control when the motor will step. For this reason, the
frequency of the function generator must be extremely low as to not overwhelm
the driver and the motor. High speed is not required in this application so high
frequency of the square wave will never be required for this application.
 Contrary to the diagram figure 22, the sleep and reset pins will be tied
together. This is because that when the reset pin is tied low, the inputs of the STEP
pin are ignored. For this reason, the reset pin must always be set high if the motor
is to be operational. Similar to the SLEEP pin where setting the pin to a low puts
the driver into sleep mode. For normal operation, the SLEEP pin must be set to a
logical high, similar to the reset pin.
 There are several values and results that must be determined during phase
1 of the motor testing. One of the most important values to test is the current output
of the stepper motor driver into the motor's inductive coils. It is imperative to not
exceed the current rating of the motors, otherwise there is a potential risk of
damaging them. The vertical motors have a current rating of 2A. Therefore for the
first phase of testing where the vertical motors are being tested, the output current
into both terminals should not exceed 2A. This current will be measured using a
multimeter supplied in the UCF Senior Design Lab. During this testing, a setup for
the drivers should be determined to ensure that the output current does not exceed
1.68A as that is the current rating for the horizontal motor. Other than output
current, this phase of testing should determine if the values determined for logical
high and logical low voltages are sufficient to drive the driver. In addition, an image
of the output of the function generator supplying the step function for the STEP pin
of the driver should be recorded and given. This STEP function should be
simulated in phase 2 testing using the microcontroller.

118

 The setup for the board is fairly simple. The diagram Figure 22 shown below
gives a simple representation as to how this works. The VMOT pin is the pin that
supplies voltage to the motor. VMOT refers to Voltage of the Motor. The ground of
the power supply is connected to the Ground pin next to VMOT. A 100uF capacitor
is placed between these pins in order to decouple them. The purpose of this
capacitor is to deal with voltage spikes which may unintentionally harm the motor
and/or the driver. It should be noted that these pins should not be supplied by the
microcontroller. There are several reasons for this ranging from safety for the
microcontroller and the driver. Another reason is that the microcontroller selected
for this project cannot supply sufficient voltage to power the driver. The next four
pins are the 1A, 1B, 2A, and 2B pins. These pins refer to the positive and negative
terminals of the inductive coils of the motor. Refer to the datasheet for the motor
to appropriately connect these pins to the driver. The next two pins are the VDD
and GND pin. For the microcontroller testing, these pins will be connected to the
voltage supply and ground of the microcontroller. Subsequent pins that require
either a voltage high or voltage low will either be connected to the ground or to a
value of .7*VDD for a voltage high. For phase one of testing not using a
microcontroller, these pins will be connected to a voltage power supply which will
supply 5V and 0V respectively. The voltage high and voltage low will be connected
to this line as well.

Figure 23 - A4988 Minimal Wiring Diagram

 The next pin is the ENABLE pin. This pin is active low so for testing this pin
should either not be connected or drawn to a voltage low. This pin when not active
will ignore all inputs given to the driver. Because of this, this pin must always be

119

active for testing. Ultimately, this pin will be controlled by the microcontroller to
allow independent control of each motor. The next three pins are the microstepping
pins. These pins will be drawn to voltage low for phase one of testing because
microstepping is not required for this testing. These three pins control the
microstep setting of the driver. Please refer to Figure 23 for more information
regarding the microstepping testing that will occur in phase two of the motor
testing. The next two pins are the RESET and SLEEP pins. The RESET pin is a
floating pin and should be connect to the SLEEP pin. If this is not done, the driver
will ignore the inputs given to the STEP pin and should be avoided. The STEP pin
is the pin that controls when the motor will step. In Phase two of testing, this pin
will be connected to the microcontroller and drawn high and low to create a step
function a specific number of times. In Phase One of testing this will be simulated
by connecting the pin to a function generator. The function generator will generate
a 50% duty cycle square wave at a very low frequency. If a frequency higher than
10Hz is used then this could potentially either damage the driver or the steps will
be ignored. The final pin is the DIR pin. This pin controls the direction of rotation
of the stepper motor. When this pin is drawn to a logical high the motor will step
clockwise. Inversely, if the pin is drawn to a logical low the motor will step counter-
clockwise. For phase one of testing, this pin is not relevant as the only thing being
tested is if the motor can be spun. For phase two of testing, this pin is also not
relevant as which direction of rotation is not needed for this phase of testing. This
pin however must be controlled in the final project as the direction of rotation of the
motors must be controlled.

6.2.3 Phase 1 Testing Results

 After some minor difficulty with setup and finding a suitable test
environment, a successful initial implementation of the vertical stepper motor and
the A4988 stepper motor driver was created.
 During the first phase of testing, a function generator is used to measure
the step input into the A4988 stepper motor driver. In order to ensure proper timing
and input, this function generator output was measured with the oscilloscope. A
picture of the Oscilloscope output is given in the picture below.

6.3 Microstep Testing

 As accuracy is extremely important for this application, accuracy must be
tested if microstepping is to be used in the final device. Microstepping can have a
negative impact on the accuracy of a stepper motor. However to test if the step
angle is consistent with the documentation for microstepping, a microcontroller is
required to pulse a specific number of times rather than continuously rotating the
motor. For this reason, the microstep testing and evaluation will be covered in the
second phase of testing.
 The microstep settings of the A4988 stepper motor driver are controlled
through 3 pins. Setting these pins high and low correlates to a specific microstep
setting for the driver. Setting all three microstep pins to a logical low correlates to

120

a microstep resolution of a full step. Meanwhile, setting all three of the microstep
pins to a logical high correlates to sixteenth step microstepping. The table below
is the microstepping resolution truth table given in the A4988 stepper motor driver
datasheet.

Table 18 - A4988 Microstepping Resolution Truth Table

 During phase two of the motor testing, the microstep accuracy and setting
will be tested. To test the microstepping, the microcontroller will deliver a specific
number of pulses in order to step a certain number of times. With the
microcontroller programmed with this setup, it will be known what theoretical angle
the motor will step to. This is determined by multiplying the number of pulses by
the step angle after gear reduction. The first test will be with full step microstepping.
According to TABLE 18 this correlates with all three microstepping pins set to a
logical low. The resulting theoretical angle will then be compared to the actual
angle. Two other microstep setting will be testing along with testing the fullstep.
The next setting will be fourth step microstepping which correlates to pins MS1
and MS3 tied low, while pin MS2 is tied high. The theoretical angle will be the full
step angle divided by 4 as each step is a fourth of a fullstep. The actual angle will
then be compared to the theoretical angle. This process is then going to be
repeated using sixteenth step microstepping.
 If the theoretical angles match the recorded actual angles closely, higher
level microstepping will be considered for this project. Ideally the sixteenth step
microstepping does not incur a large accuracy decrease. This is because the lower
the step angle, the arm of the of the record player will be able to more accurately
be placed.

6.3.1 Phase Two Motor Testing

 Phase two of the motor testing contains controlling the motors with the
drivers in combination with the microcontroller. The primary task of this phase of
testing is to determine if the motors can be controlled through microcontroller
programming. The programming that will be used for this phase of testing will
follow the embedded software flowchart in the previous section. Another important
thing to test in this phase of testing is to determine if the microstepping function of
the A4988 stepper motor driver does not cause a large amount of inaccuracy to
the step angle of the motors. This will be determined by finding the theoretical step

121

angle after a specific number of steps and compare that to the measured step
angle of the motor.

6.3.2 Phase Two Motor Testing Results

 In a previous section, there was discussion about how the microstepping
will be tested in phase two of the motor testing. Even though a higher resolution of
step angle is not required for the vertical motor, microstepper could help smooth
the rotation of the motor and allow less rigid movement of the tonearm. Testing the
accuracy of the vertical motor is not extremely important but nevertheless it is good
practice to test it. The horizontal motor on the other hand, it is very important to
test the accuracy. Testing was performed on the horizontal motor and confirmed
that the microstepping was about as accurate as the below tables describe.

 Number of
Steps

Theoretical Step
Angle

Measured Step
Angle

Full Step 100 180 degrees 180 degrees

Quarter Step 100 45 degrees 45 degrees

Sixteenth Step 100 11.25 degrees 11.25 degrees

Table 19 - Vertical Motor Microstep Testing

 Number of
Steps

Theoretical Step
Angle

Measured Step
Angle

Full Step 1900 180degrees 180 degrees

Quarter Step 1900 45 degrees 45 degrees

Sixteenth Step 1900 11.25 degrees 11.25 degrees

Table 20 - Horizontal Motor Microstep Testing

From the tables above it can be observed that the final angles of rotation in

the microcontroller testing have no noticeable difference between the theoretical
angle and the actual angle of rotation. This is a fantastic result as this means that
the degree desired to be stepped to will be very close to the angle which is
required. Also important to note, microstepping does not induce a significant error
to the accuracy of the motors. Because of this, it can be concluded that the project
should implement microstepping to smooth the rotation of the motors. This should
in theory make smoother motion of the tonearm.

122

6.4 Computer Vision Testing

Multiple tests of the developed computer vision system will be applied to
ensure that the functionality is up to par with the functionality that was described
in the requirements and the use case of the system. The results provided from
testing will either affirm that the task has been correctly assessed and executed to
this point or that there was some error in implementation or design and will provide
insight to fix the shortcomings.

6.4.1 Object Recognition

It is critical to ensure that the when a picture of a record label is taken that
it is can correctly identified so accurate times and information about the record is
pulled from the database. The duty of checking how accurate the computer vision
and deep learning system is can be broken down into several assessments. The
first and simplest a test of the object detection to confirm that the picture that has
been taken and is being analyzed by the deep neural network is indeed a vinyl
record. This test will simply involve checking whether an image contains an
instance of a vinyl record by passing a training set of images to the neural network
and assessing the output of the network to the actual answer. The total percentage
of correct answers from the computer vision system is desired to be 85% or above.

6.4.2 Optical Text Recognition (OCR)

A more specialized version of object recognition geared towards words,
optical character recognition or OCR is the portion of the computer vision system
that will pull all the identifying information on the record label to be analyzed. This
means that another major component of this subsystem of the Vinyl Player 2.0 is
to check if the text on the record label is being detected and is representing the
text accurately. Just as in the object detection there will be a benchmark run on
the computer vision system to check what is the accuracy of it, but unlike the
previous test this phase of testing will also involve checking that the text that is
pulled is the correct text and that it is formatted correctly.

6.4.3 Classification

The final test will be to see if the software can correctly identify the

necessary information from record labels to then query the database will be to

classify the text that is pulled from the image as artist or album or neither.

123

7 Project Operation
The following section aims to give clear steps for operating the Vinyl Record

2.0. In creating the project, one goal was to make all user interactions as simple,
easy, and intuitive as possible.

7.1 Login & Registration

Logging into the app is as simple as entering in the email and password of
the user being logged in as. If the email/password combination doesn’t exist in the
database, an error will be displayed to the user. It is important to note that the error
will not specify whether it was the email or password that were incorrect, as giving
this information out could help ill-intentioned users to gain information on how to
hack user’s accounts. There will also be a button on the login page that allows a
first-time user to register. The only information will be collected upon registration
is an email and a password. The password will be required to be entered twice to
ensure the user correctly entered it. If the account is created successfully, the user
will be logged in. Once the user has logged in, a session will be created for the
user that will last indefinitely. A session will only be destroyed if the user logs out
or logs in on a different device. This will then prompt the user to relogin.

7.2 Cataloging Records

Once the user has logged in, they will be directed to the home screen for
that user. The home screen will contain a list of all of the records that have been
added to the user’s collection. To add a new record to the collection, a record can
be searched by pulling the screen down; the search bar will appear at the top of
the screen. The search field will allow the user to enter the artist and record name.
The results of the search will appear, showing the album’s cover art, the artist
name, record name, and the year of the release. The user can then tap on one of
the listed albums to view more information about the record. Upon tapping on one
of the records, the page will be directed to the record detail page. This page will
list all of the songs on the record and their durations. Tapping the “Add to Catalog”
button at the top will add the record to the user’s catalog. Upon pressing the home
button, the user would once again be directed to the home screen, which will show
their catalog. Their catalog would now include the album that was just added.

7.3 Record Player Setup

To setup the record player, it should simply be place on a flat surface and
plugged into the wall. It is important that the record player is placed on a flat, stable
surface in order to prevent the movement of the record from shaking the record
player and affecting the sound. Once the record player is plugged in, a record can
be placed on the player. To put a record on the record player, the arm of the player
should be removed and the record removed from the sleeve. The record should
be placed gently such that the hole in the center fits in the silver mounting rod on

124

the record player. Once it has been placed, the arm can be gently lowered onto
the desired location on the record and the the record player can be turned on for
manual play. The next section will explain how automatic play should be used.

7.4 Queueing a Record Through the App

To start the record player at a specific song on the record, the user should
go to the home page and select the record that the user has placed on the record
player. From the record’s detail page, the song that the user wants to play should
be tapped once. The record player arm should then be lifted and calibrated
automatically, then moved to the correct spot on the record and lowered gently.
The record player will then begin to rotate and start playing. If at any point the user
wants to stop the music, they can press the pause button to stop the rotation of the
record player platter. If the user wants to play a different song, they can once again
tap on the song they would like the play and the arm will once again lift, calibrate,
rotate, and lower onto the appropriate spot. If one side of the record has finished
playing, the bottom arm will be enacted.

125

8 Administrative Content
When starting such an extensive project it can be crucial to have predefined

guidelines for how much time and money should be spent on each component of
the project. This next section will have the initially proposed budget and project
milestones, as well as the final cost analysis.

8.1 Initial Budget

The initial breakdown of the items needed for this project, as well as their
costs, is outlined below.

Item Cost Per Item Quantity Subtotal

Record Player $200 1 $200

Arm Motor $75 - $150 1 $75 - $150

Up & down Motor $10 - $30 1 $10 - $30

Power Supply $20 - $40 2 $40 - $80

Controller $20 - $40 1 $20 - $40

MCU $20 - $50 1 $20 - $50

Total $365 - $550

Table 21 - Initial Budget

8.2 Final Cost Analysis

As the project progressed, there was a difference both in cost and the items
purchased between the initially proposed budget and what was actually used. In
the end, the variation in the total cost of this project differed from what was
originally predicted for a variety of reasons. Firstly, it was difficult to predict some
of the things that would need to be purchased (breadboard, etc.). Also, some of
the items were more expensive than was anticipated, and shipping and handling
was an added expense. Also, some parts could break, so extras were ordered in
case this happen. Below is a table showing the final items purchased and the total
cost of the project. As a note, there are still some items that have not been
purchased upon creation of this following table.

Item
Cost Per
Item Quantity Subtotal

Development Cost
Only

Record Player $116.41 1 $116.41 No

126

Development Boards $25.57 3 $76.71 Yes

Motor Driver $5.95 3 $17.85 No

Motor Driver (Header pins
soldered) $7.45 1 $7.45 Yes

Stepper Motor (vertical) $12.99 2 $25.98 No

Stepper Motor (horizontal) $47.00 1 $47.00 No

Signal PCB $98.56 1 $98.56 No

Sensor for testing $20.00 1 $20.00 No

Motor Mounts $8.99 1 $8.99 No

Breadboards & Wires $10.99 1 $10.99 Yes

Shipping $123.94 1 $123.94 Yes

USB Port Hub - Targus $15.99 1 $15.99 Yes

PCB Parts $69.05 1 $69.05 No

Printing Report $30.00 1 $30.00 Yes

Drill Bit and Tap Set $4.97 1 $4.97 Yes

Standoffs $18.43 1 $18.43 No

Loctite $4.19 1 $4.19 Yes

Screws/Nuts $6.55 1 $6.55 No

Bluetooth module $17.90 1 $17.90 No

Fabric $6.99 1 $6.99 No

Velcro stickers $7.98 1 $7.98 No

Power Converters $30.26 1 $30.26 No

Soldering Equipment $9.00 1 $9.00 Yes

Multimeter $18.19 1 $18.19 Yes

Development Total $793.38

Product
Total 491.95

8.3 Financing

This project won a grant of $1,000 from Soartech, a company that sponsors
one design project each semester. Any costs above $1,000 will be self-financed
by the group

127

8.4 Project Milestones

Below is an outline of all of the milestones to be completed in implementing
this project, along with the desired completion date and the actual completion date.
Though it is difficult to predict how long complicated tasks will take to accomplish,
this is the group’s best guess of when the following items can realistically be
completed. Some of the items listed are in the future and therefore are not
completed. In those cases, the “Actual Completion Date” column was left blank.

Milestone Goal Completion
Date

Actual Completion
Date

Research Project Feasibility 9/15/2017 9/15/2017

Research Project Details 11/3/2017 11/3/2017

Order All Materials 11/15/2017 11/11/2017

Implement Circuit to Power
Motors/Controller

11/23/2017 11/13/2017

Finalize Hardware Schematics 1/1/2018 2/1/2018

Finalize Software Design Planning 1/1/2018 2/1/2018

Implement Turntable Motor 1/14/2018 3/1/2018

Implement Motor to Lift Arm 1/14/2018 3/1/2018

Implement Bluetooth Connection with
Controller

1/15/2018 2/1/2018

Implement Motor for Radial Motion 1/21/2018 3/1/2018

Implement Calibration and Clutch for
Motor

1/21/2018 2/15/2018

Add All Motors to Record Player 2/1/2018 2/1/2018

Complete Application UI 2/1/2018 3/15/2018

Implement Two-Sided Play 3/1/2018 NA

Finalize Project 3/15/2018 4/24/2018

Table 22 - Project Milestones

128

9 Conclusion
The conception and design of the Vinyl Player 2.0 has stemmed from the a

foreseen issue with the existing record player industry that is not giving a listener
the option to enjoy a more casual listening experience and aims to solve this issue
through a unique integration of existing analog equipment and forward-thinking
technology.

It pursuing this novel solution there was a thorough amount of research to
learn about all of the necessary components that goes into a successful
implementation of the idea. Using the knowledge gained from research there was
a series of design meetings held to discuss topics such as hardware design,
software design, part selection, system workflow and supplemental functionality.

With the initial implementation of the Vinyl Player 2.0 agreed upon the team
has ordered parts for the hardware portion of the system and begun testing them
to assure that they are functional and gain a better understanding of how to control
them, which will be critical when integrating the components. On the software side
both the initial development of the UI for the mobile application that the user will
interface with and the computer vision system that will drive the data that is
displayed on the app and used for calculations of movement of the turntable
tonearm.

There is an intricate plan in place with goals set at various points in time
from now until the showcase that will take place towards the end of the Spring
2018 semester to assure that the development of the product is on time and
functioning to specifications. For the software engineers of the team the main
objective is have by the end of the year both a fully functional computer vision
system that recognizes text on the record label and correctly classifies the artist
and album implemented using machine learning and a intuitive mobile app inspired
by existing music players that provides users a streamlined interface for utilizing a
record player. With the same deadline that the software team has, electrical
engineers on the team will have to goal of creating an encasing for the dual needle
structure that will be used to play both sides of the record that is on the platter.
This is an essential piece of the hardware system to get done early because the
usage of the bottom needle is somewhat unprecedented and needs to be analyzed
to see what form of adjustments, if any, need to be made.

9.1 Sponsor

SoarTech, an artificial intelligence defense contractor whose Orlando office
specializes in intelligent training solutions, is the sponsor of the Vinyl Player 2.0
and has graciously provided the team with 1000 dollars for the expenses of the
project. The support given by the Ann Arbor based company has allowed the team
to focus more on the design on the system without the burden of how to source
the resources for the components. The physical pieces needed to make up the
system were still skillful research and budgeted to avoid overspending and allow
leeway in case of error while testing or implementing certain hardware
components.

129

10 Appendices
The following section will contain references to other people’s work and

diagrams that were discussed, but not included in the report.

10.1 References

Unger, Amy. “Parts of a Record Player.” Klipsch, VOXX International, 13 Feb. 2017,

www.klipsch.com/blog/parts-of-a-record-player.

Vallejo, Claudio. “Turntable Basics // Belt Drive vs Direct Drive.” The Limited Press, The Limited

Press, 11 Nov. 2014, http://thelimitedpress.com/turntable-basics-belt-drive-vs-direct-drive.

Weiler, Harold D. “THE WEAR AND CARE OF RECORDS AND STYLI.” Shure, Shure, 1954,

http://www.shure.com/americas/support/find-an-answer/stylus-wear-and-record-wear.

Euby, et al. “AT-LP60 Fully Automatic Stereo Turntable System.” Fully Automatic Stereo Turntable

|| Audio-Technica US, Audio-Technica U.S., Inc., 10 Mar. 2017, www.audio-

technica.com/cms/turntables/9a7f42b88ee1e14b/index.html.

Koolaidwino, et al. “AT-LP3BK Fully Automatic Belt-Drive Stereo Turntable.” Fully Automatic Belt-

Drive Stereo Turntable || Audio-Technica US, Audio-Technica U.S., Inc., 28 July 2017, www.audio-

technica.com/cms/turntables/2e7bb0d91a36a72a/index.html.

Dsg, et al. “AT-LP120BK-USB Direct-Drive Professional Turntable (USB & Analog).” Direct-Drive

Professional Turntable (USB & Analog) with AT95E Cartridge || Audio-Technica US, Audio-

Technica U.S., Inc., 24 Jan. 2017, www.audio-

technica.com/cms/turntables/1468a7a181c8627f/index.html.

“MINIMUM SYSTEM REQUIREMENTS.” TT250USB Professional DJ Direct Drive Turntable |

Numark, InMusic, Inc., 2017, www.numark.com/product/tt250usb.

“T.62 M2.” Stanton T.62 M2 - DJ Equipment, DJ Gear, Phono Cartridges & Needles, DJ Mixer, DJ

Turntables, Headphones, CD Players, GIBSON GUITAR CORPORATION, 2012,

www.stantondj.com/stanton-turntables/t62.html.

B. Popper, "Google announces over 2 billion monthly active devices on Android," The Verge, 17 May

2017. [Online]. Available:

https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users.

[Accessed 2 November 2017].

N. Statt, "1 billion Apple devices are in active use around the world," The Verge, 26 January

2016. [Online]. Available:

https://www.theverge.com/2016/1/26/10835748/apple-devices-active-1-billion-iphone-ipad-ios.

[Accessed 2 November 2017].

Wikipedia, "Windows Phone," Wikipedia, 2 November 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Windows_Phone. [Accessed 2017 November 2].

http://www.klipsch.com/blog/parts-of-a-record-player
http://thelimitedpress.com/turntable-basics-belt-drive-vs-direct-drive
http://www.shure.com/americas/support/find-an-answer/stylus-wear-and-record-wear
http://www.audio-technica.com/cms/turntables/9a7f42b88ee1e14b/index.html
http://www.audio-technica.com/cms/turntables/9a7f42b88ee1e14b/index.html
http://www.audio-technica.com/cms/turntables/2e7bb0d91a36a72a/index.html
http://www.audio-technica.com/cms/turntables/2e7bb0d91a36a72a/index.html
http://www.stantondj.com/stanton-turntables/t62.html

130

M. Allison, "Microsoft has now sold over 100 million Windows Phones," mspoweruser, 21 July 2015.

[Online]. Available: https://mspoweruser.com/microsoft-now-sold-100-million-windows-phones/.

[Accessed 2 November 2017].

Wikipedia, "Windows 10 Mobile," Wikipedia, 19 October 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Windows_10_Mobile. [Accessed 2 November 2017].

K. Noyes, "10 Reasons Open Source is Good for Business," PCWorld, 5 November 2010. [Online].

Available:

https://www.pcworld.com/article/209891/10_reasons_open_source_is_good_for_business.html.

[Accessed 2 November 2017].

GitHub, "GitHub Features," GitHub, 2017. [Online]. Available: https://github.com/features. [Accessed

2 November 2017].

Microsoft, "Use Team Foundation Version Control," Microsoft, 29 August 2017. [Online]. Available:

https://docs.microsoft.com/en-us/vsts/tfvc/overview. [Accessed 2 November 2017].

Perforce, "All Your Repos In One Space," Perforce, 2017. [Online]. Available:

https://www.perforce.com/products/helix-teamhub. [Accessed 2 November 2017].

Amazon, "AWS CodeCommit," Amazon, 2017. [Online]. Available:

https://aws.amazon.com/codecommit/. [Accessed 2 November 2017].

Android, "Meet Android Studio," Android, 2017. [Online]. Available:

https://developer.android.com/studio/intro/index.html. [Accessed 2 November 2017].

Jet Brains, "IntelliJ IDEA," Jet Brains, 2017. [Online]. Available: https://www.jetbrains.com/idea/.

[Accessed 2 November 2017].

Android, "Run Apps on the Android Emulator," Android, 2017. [Online]. Available:

https://developer.android.com/studio/run/emulator.html. [Accessed 2 November 2017].

Android, "Test Your App," Android, 2017. [Online]. Available:

https://developer.android.com/studio/test/index.html. [Accessed 2 November 2017].

Android, "Build a UI with Layout Editor," Android, 2017. [Online]. Available:

https://developer.android.com/studio/write/layout-editor.html. [Accessed 2 November 2017].

Bluetooth, "what is Bluetooth?," Bluetooth, 2017. [Online]. Available: https://www.Bluetooth.com/what-

is-Bluetooth-technology/how-it-works. [Accessed 2 November 2017].

Wikipedia, "Near-field communication," Wikipedia, 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Near-field_communication. [Accessed 2 November 2017].

Square, Inc. Property, "Near Field Communication versus Bluetooth," Sqaure, Inc. Property, 2017.

[Online]. Available: http://nearfieldcommunication.org/Bluetooth.html. [Accessed 2 November 2017].

131

D. Nosowitz, "Everything You Need to Know About Near Field Communication," Popular Science, 1

March 2011. [Online]. Available: https://www.popsci.com/gadgets/article/2011-02/near-field-

communication-helping-your-smartphone-replace-your-wallet-2010. [Accessed 2 November 2017].

C. F. &. J. Layton, "How Bluetooth Works," howstuffworks, 2017. [Online]. Available:

https://electronics.howstuffworks.com/bluetooth4.htm. [Accessed 2 November 2017].

J. B. M. B. M. H. R. S. L. C. K. S. John Padgette, "Guide to Bluetooth Security," NIST, May

2017. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

121r2.pdf. [Accessed 2017 November 2017].

"Bluetooth Transmission Technology," [Online]. Available:

https://theses.lib.vt.edu/theses/available/etd-11182002-115502/unrestricted/Chapter2.pdf. [Accessed

2 November 2017].

Wikipedia, "Bluetooth," Wikipedia, 2 November 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Bluetooth#Bluetooth_5. [Accessed 2 November 2017].

M. Shiekh, "Bluetooth Vs NFC Vs Wifi Direct," Phone Guru Reviews, 20 November 2013. [Online].

Available: http://www.phonegurureviews.com/Bluetooth-nfc-wifi-direct/. [Accessed 2 November

2017].

[Online].

Android, "Near Field Communication," Android, 2017. [Online]. Available:

https://developer.android.com/guide/topics/connectivity/nfc/index.html. [Accessed 2 November 2017].

Android, "Creating P2P Connections with Wi-Fi," Android, 2017. [Online]. Available:

https://developer.android.com/training/connect-devices-wirelessly/wifi-direct.html. [Accessed 2

November 2017].

WiFi Alliance, "Wi-Fi Direct," WiFi Alliance, 2017. [Online]. Available: https://www.wi-fi.org/discover-

wi-fi/wi-fi-direct. [Accessed 2 November 2017].

B. Clark, "The Differences Between Bluetooth 4.0 and Wi-Fi Direct You Need to Know," MUO, 13 July

2015. [Online]. Available: http://www.makeuseof.com/tag/the-differences-between-Bluetooth-4-0-

and-wi-fi-direct-you-need-to-know/. [Accessed 2 November 2017].

Android, "android.Bluetooth," Android, 2017. [Online]. Available:

https://developer.android.com/reference/android/Bluetooth/package-summary.html. [Accessed 2

November 2017].

Android, "Bluetooth Low Energy," Android, 2017. [Online]. Available:

https://developer.android.com/guide/topics/connectivity/Bluetooth-le.html. [Accessed 2 November

2017].

132

Android, "Bluetooth," Android, 2017. [Online]. Available:

https://developer.android.com/guide/topics/connectivity/Bluetooth.html. [Accessed 2 November

2017].

Bluetooth SIG, "Core Specifications," Bluetooth SIG, 2017. [Online]. Available:

https://www.Bluetooth.com/specifications/Bluetooth-core-specification. [Accessed 2 November 2017].

J. G. Sponas, "Things you should know about Bluetooth range," GetConnectedBlog, 2 June 2016.

[Online]. Available: http://blog.nordicsemi.com/getconnected/things-you-should-know-about-

Bluetooth-range. [Accessed 2 November 2017].

K. Ren, "Ten Important Differences Between Bluetooth BREDR And Bluetooth Smart," Bluetooth, 6

October 2015. [Online]. Available: https://blog.Bluetooth.com/ten-important-differences-between-

Bluetooth-bredr-and-Bluetooth-smart. [Accessed 2 November 2017].

R. Heydon, "Technology Introduction," Bluetooth SIG, 2009. [Online]. Available:

https://www.Bluetooth.org/OTV/3-

TechnologyIntroduction/?_ga=1.90884376.320705699.1462460049. [Accessed 2 November 2017].

R. Heydon, "What is Bluetooth low energy technology," Bluetooth SIG, 2009. [Online]. Available:

https://www.Bluetooth.org/OTV/1-Whatis/. [Accessed 2 November 2017].

Bluetooth SIG, "develop with Bluetooth," Bluetooth SIG, 2017. [Online]. Available:

https://www.Bluetooth.com/develop-with-Bluetooth/developer-resources-tools/developer-training-

videos. [Accessed 2 November 2017].

J. B. M. B. M. H. John Padgette, "Archived NIST Technical Series Publication," NIST, 5 May

2017. [Online]. Available:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-121r1.pdf. [Accessed

17 November 2017].

D. Nosowitz, "Everything You Need to Know About Near Field Communication," Po

pular Science , 1 May 2011. [Online]. Available:

https://www.popsci.com/g00/gadgets/article/2011-02/near-field-communication-helping-your-

smartphone-replace-your-wallet-2010?i10c.encReferrer=#page-3. [Accessed 11 November

2017].

Perforce, "Helix-TeamHub," Perforce Company, [Online]. Available: https://www.perfor

ce.com/products/helix-teamhub/pricing. [Accessed 11 November 2017].

StackShare, "GitHub vs. AWS CodeCommit vs. GitBucket," StackShare, [Online]. Available:

https://stackshare.io/stackups/aws-codecommit-vs-gitbucket-vs-github. [Accessed 17

November 2017].

133

Microsoft, "Choosing the right version control for your project," Microsoft, 12 May 2017.

[Online]. Available: https://docs.microsoft.com/en-us/vsts/tfvc/comparison-git-tfvc. [Accessed

17 November 2017].

Wikipedia, "Team Foundation Server," Wikipedia, 17 November 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Team_Foundation_Server. [Accessed 17 Novmeber 2017].

Microsoft, "Permissions and groups in VSTS and TFS," Microsoft, 17 October 2017. [Online].

Available: https://docs.microsoft.com/en-us/vsts/security/permissions. [Accessed 17

November 2017].

Microsoft, "Visual Studio Team Services," Microsoft, 2017. [Online]. Available:

https://azure.microsoft.com/en-us/services/visual-studio-team-services/. [Accessed 17

November 2017].

Android, "Camera API," Android, 2017. [Online]. Available:

https://developer.android.com/guide/topics/media/camera.html. [Accessed 17 November

2017].

Android, "Core App Quality," Android, 2017. [Online]. Available:

https://developer.android.com/develop/quality-guidelines/core-app-quality.html. [Accessed

11 November 2017].

Google, "Android 7.0 Nougat," Google, [Online]. Available:

https://www.android.com/versions/nougat-7-0/. [Accessed 17 November 2017].

Android, "AOSP Java Code Style for Contributors," Android, 27 November 2017. [Online].

Available: https://source.android.com/setup/code-style. [Accessed 3 December 2017].

Google, "Google Java Style Guide," Google , [Online]. Available:

https://google.github.io/styleguide/javaguide.html. [Accessed 3 December 2017].

Android, "Add C and C++ Code to Your Project," Android, 2017. [Online]. Available:

https://developer.android.com/studio/projects/add-native-code.html. [Accessed 3 December

2017].

Android, "Connect to Firebase," Android, 2017. [Online]. Available:

https://developer.android.com/studio/write/firebase.html. [Accessed 3 December 2017].

Firebase, "Firebase by platform," Firebase, 2017. [Online]. Available:

https://firebase.google.com/docs/. [Accessed 3 December 2017].

Android Studio, "Android Lint," Android, 15 November 2011. [Online]. Available:

http://tools.android.com/tips/lint. [Accessed 3 December 2017].

Android, "Improve Your Code with Lint," Android, 2017. [Online]. Available:

https://developer.android.com/studio/write/lint.html. [Accessed 3 December 2017].

134

Android, "Add Multi-Density Vector Graphics," Android, 2017. [Online]. Available:

https://developer.android.com/studio/write/vector-asset-studio.html. [Accessed 3 December

2017].

Android, "Inspect Network Traffic with Network Profiler," Android, 2017. [Online]. Available:

https://developer.android.com/studio/profile/network-profiler.html. [Accessed 3 December 2017].

Android, "Inspect GPU Rendering Speed and Overdraw," Android, 2017. [Online]. Available:

https://developer.android.com/studio/profile/inspect-gpu-rendering.html. [Accessed 3 December

2017].

Android, "Profile Battery Usage with Batterystats and Battery Historian," Android, 2017. [Online].

Available: https://developer.android.com/studio/profile/battery-historian.html. [Accessed 3

December 2017].

Android, "View the Java Heap and Memory Allocations with Memory Profiler," Android, 2017.

[Online]. Available: https://developer.android.com/studio/profile/memory-profiler.html. [Accessed 3

December 2017].

Android, "Inspect CPU Activity and Method Traces with CPU Profiler," Android, 2017. [Online].

Available: https://developer.android.com/studio/profile/memory-profiler.html. [Accessed 3

December 2017].

QualCommm, "Snapdragon 835 Mobile Platform," Qualcommm, 2017. [Online]. Available:

https://www.qualcomm.com/products/snapdragon/processors/835. [Accessed 3 December 2017].

Christ Smith, "Galaxy S8 and Galaxy S8+: The full specs," BGR, 17 March 2017. [Online].

Available: http://bgr.com/2017/03/29/galaxy-s8-plus-specs-official/. [Accessed 3 December 2017].

Android, "JNI Tips," Android, 2017. [Online]. Available:

https://developer.android.com/training/articles/perf-jni.html. [Accessed 3 December 2017].

Android, "Legal Notice," Android, 2017. [Online]. Available:

https://developer.android.com/legal.html. [Accessed 3 December 2017].

“CC2540F128RHAT - TI store,” Texas Instruments | TI Store. [Online]. Available:

https://store.ti.com/CC2540F128RHAT.aspx. [Accessed: 03-Dec-2017].

“MSP430F4618 (ACTIVE),” MSP430F4618 16-Bit Ultra-Low-Power MCU, 116KB Flash, 8KB RAM,

12-Bit ADC, DMA, 160 Seg LCD | TI.com. [Online]. Available:

http://www.ti.com/product/MSP430F4618. [Accessed: 03-Dec-2017].

eZ. Systems, “nRF52832,” nRF52832 / Bluetooth low energy / Products / Home - Ultra Low Power

Wireless Solutions from NORDIC SEMICONDUCTOR. [Online]. Available:

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832. [Accessed: 03-Dec-

2017].

135

“CC2564 (ACTIVE),” CC2564 Dual-mode Bluetooth® Controller | TI.com. [Online]. Available:

http://www.ti.com/product/CC2564/description. [Accessed: 03-Dec-2017].

“Applications,” ESP8266EX Overview | Espressif Systems. [Online]. Available:

http://espressif.com/en/products/hardware/esp8266ex/overview. [Accessed: 03-Dec-2017].

“PAGINA PRINCIPAL,” Electrnica Estudio | Ingeniera Electrnica y Proyectos PICmicro®. [Online].

Available: http://www.electronicaestudio.com/docs/istd016A.pdf. [Accessed: 03-Dec-2017].

“Arduion Uno Rev3,” Arduino Uno Rev3, 2007. [Online]. Available:

https://store.arduino.cc/usa/arduino-uno-rev3. [Accessed: 03-Dec-2017].

Thomas A. Kinney • Application Engineer • Baumer Electric | Sep 01, 2001, “Proximity Sensors

Compared: Inductive, Capacitive, Photoelectric, and Ultrasonic,” Machine Design, 13-Mar-2017.

[Online]. Available: http://www.machinedesign.com/sensors/proximity-sensors-compared-

inductive-capacitive-photoelectric-and-ultrasonic. [Accessed: 03-Dec-2017].

www.cycon.de S. cy:con, “OT 18 M 1000 P4-B4 Diffuse Sensor - di-soric,” Sensors, Lighting and

Accessories - di-soric. [Online]. Available: https://www.di-soric.com/en/OT-18-M-1000-P4-B4-

31856.html?pdb_kategorie=1523. [Accessed: 03-Dec-2017].

Pepperl Fuchs, “Diffuse Mode Sensors,” Pepperl Fuchs, 01-Dec-2017. [Online]. Available:

https://www.pepperl-fuchs.us/usa/en/classid_47.htm?view=productdetails&prodid=1996.

[Accessed: 03-Dec-2017].

E. Huet, “Resurgence In Vinyl Records Means Booming Business -- And Growing Pains -- For

Factories,” Forbes, 10-Jul-2015. [Online]. Available:

https://www.forbes.com/sites/ellenhuet/2015/07/08/resurgence-in-vinyl-records-means-booming-

business-and-growing-pains-for-factories/#40f206d5f380. [Accessed: 03-Dec-2017].

“RokBlok - A Different Spin on Vinyl,” RokBlok - A Different Spin on Vinyl. [Online]. Available:

http://rokblok.co/. [Accessed: 03-Dec-2017].

“Home • LOVE TURNTABLE,” LOVE TURNTABLE. [Online]. Available:

http://www.loveturntable.com/. [Accessed: 03-Dec-2017].

Redbear, “redbear/nRF5x,” GitHub, 27-Nov-2017. [Online]. Available:

https://github.com/redbear/nRF5x/tree/master/nRF52832. [Accessed: 03-Dec-2017].

“Server-side web frameworks,” Mozilla Developer Network. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks.

[Accessed: 03-Dec-2017].

“Ruby on Rails: What It Is and Why We Use It For Web Applications | Bit Zesty | London UK,” Bit

Zesty, 09-Nov-2017. [Online]. Available: https://bitzesty.com/2014/03/03/ruby-on-rails-what-it-is-

and-why-we-use-it-for-web-applications/. [Accessed: 03-Dec-2017].

136

“Standard for Audio, Video and Similar Electronic Apparatus - Safety Requirements,” Standards

Catalog. [Online]. Available: https://standardscatalog.ul.com/standards/en/standard_60065_7.

[Accessed: 03-Dec-2017].

“C Coding Standard,” C Coding Standard. [Online]. Available:

https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html#documentation. [Accessed: 03-

Dec-2017].

“C Programming Standards,” C programming standards. [Online]. Available:

http://emboss.sourceforge.net/developers/c-standards_new.html#ANSIStandardC. [Accessed: 03-

Dec-2017].

SFUptownMaker, “PCB Basics,” PCB Basics. [Online]. Available:

https://learn.sparkfun.com/tutorials/pcb-basics. [Accessed: 03-Dec-2017].

E. Engineering, “Electrosoft Engineering,” Concepts and Terminology used in Printed Circuit

Boards (PCB) -Electrosoft Engineering, 2010. [Online]. Available: http://www.pcb.electrosoft-

engineering.com/04-articles-custom-system-design-and-pcb/01-printed-circuit-board-

concepts/printed-circuit-board-pcb-concepts.html. [Accessed: 03-Dec-2017].

“Surface Mount vs Through Hole Printed Circuit Boards,” pcboardrework, 25-Aug-2016. [Online].

Available: http://www.pcboardrework.com/through-hole-vs-surface-mount/. [Accessed: 03-Dec-

2017].

V. Marshall, “Build a Simple DC Power Supply,” Popular Science, 02-Feb-2010. [Online]. Available:

https://www.popsci.com/diy/article/2009-12/build-simple-dc-power-supply#page-4. [Accessed: 03-

Dec-2017].

“A Guide to TF Layers: Building a Convolutional Neural Network | TensorFlow.” TensorFlow,
www.tensorflow.org/tutorials/layers. [Accessed: 03-Dec-2017].

Ujjwalkarn. “An Intuitive Explanation of Convolutional Neural Networks.” The data science blog, 28
May 2017, ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/.

Viola, P., and M. Jones. “Rapid object detection using a boosted cascade of simple features.”
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, 2001, doi:10.1109/cvpr.2001.990517

“About.” About - Point Cloud Library (PCL), pointclouds.org/about/.

Jackel, L. D., et al. “Optical Character Recogntion For Automatic Teller Machines.” Industrial
Applications of Neural Networks, 1998, pp. 375–378., doi:10.1142/9789812816955_0044

“Deep Learning.” "CBLL, Research Projects, Computational and Biological Learning Lab, Courant
Institute, NYU", cs.nyu.edu/~yann/research/deep/.

“List of online music databases.” Wikipedia, Wikimedia Foundation, 23 Nov. 2017,
en.wikipedia.org/wiki/List_of_online_music_databases.

“About Discogs.” About Us, www.discogs.com/about.

“SimpleCV Tutorial.” SimpleCV Tutorial — Tutorial, tutorial.simplecv.org/en/latest/.

137

“Welcome.” Welcome — Theano 1.0.0 documentation, deeplearning.net/software/theano/.

“OpenCV.” Wikipedia, Wikimedia Foundation, 21 Nov. 2017, en.wikipedia.org/wiki/OpenCV.

“MATLAB.” MathWorks, www.mathworks.com/products/matlab.html.

10.2 Copyright Permissions

This is the email sent to Allegro MicroSystems requesting use of datasheet
items for project report. No response was given.

Figure 24 - A4988 Permission Request

This is the email sent to Redbear Labs requesting the use of datasheet items for
the project report. The following response was given.

Figure 25 - Redbear Labs Permission Request

138

This is a message sent to the SuperDataScience team, that are the instructors
for the Computer Vision A-Z udemy course, asking for permission to utilize some
a screenshot from the course. This is not an email because the website of the
company did not provide an email on their website and link their 'Contact Us'
page to Facebook Messenger. There is no response as of yet.

Figure 26 – SuperDataScience Permission Request

